import sys import os from pathlib import Path import json import os import dataclasses from dataclasses import dataclass from typing import Any, Optional import math import logging from logging import NullHandler, StreamHandler import numpy as np import cv2 import tensorflow as tf __import__('pkg_resources').declare_namespace(__name__) # Set default logging handler to avoid "No handler found" warnings. logger = logging.getLogger(__name__) if not logger.hasHandlers(): logger.addHandler(NullHandler()) logger.addHandler(StreamHandler(sys.stdout)) logger.setLevel('INFO') # environment variables: # DATAPATH: PATH of the data files DATA_FOLDER = "/data/eurova/cumulus_database/" if "DATAPATH" in os.environ: DATA_FOLDER = os.environ["DATAPATH"] if "AIX_DATA" in os.environ: AIX_DATA = Path(os.environ["AIX_DATA"]) else: AIX_DATA = Path("data") if "AIX_MODELS" in os.environ: AIX_MODELS = Path(os.environ["AIX_MODELS"]) else: AIX_MODELS = Path("models") if "AIX_EVALS" in os.environ: AIX_EVALS = Path(os.environ["AIX_EVALS"]) else: AIX_EVALS = Path("eval") AIX_DATASETS = AIX_DATA / "datasets" MATURE = "mature" IMMATURE = "immature" def init_path(output_path:Path, stages=[IMMATURE, MATURE]): output_path.mkdir(parents=True, exist_ok=True) for stage in stages: (output_path/stage).mkdir(exist_ok=True) # An item is a generalization which includes as particular cases an oocyte image, an oocyte mask, and patches of those. @dataclass class Item: dataset: Any mask: bool index: str stage: str = "" extension: str = ".png" def filename(self): if self.mask: bp = Path(self.dataset.rooted_annotations_path) else: bp = Path(self.dataset.rooted_images_path) if self.stage != "": bp = (bp / self.stage) f_name = str(bp / (self.index + self.extension)) #print(f_name) return f_name def raw_image(self, opts=cv2.IMREAD_UNCHANGED, remove_alpha=True): img = cv2.imread(self.filename(), opts) if len(img.shape) == 3 and img.shape[2] == 4: print(self.filename() + " is in RGBA format. We remove the A") # print(np.unique(img[:,:,3])) # print(np.unique(img[:,:,0]-img[:,:,1])) img = img[:, :, :3] return img def float_image(self, opts=cv2.IMREAD_UNCHANGED): return self.raw_image(opts).astype(np.float32) def norm_image(self, opts=cv2.IMREAD_UNCHANGED): return self.float_image(opts) / 255. def uint_norm_image(self, opts=cv2.IMREAD_UNCHANGED): return self.raw_image(opts) / 255. def tensor(self, shape): img = self.raw_image(cv2.IMREAD_GRAYSCALE) if len(img.shape) == 2: img.shape = (img.shape[0], img.shape[1], 1) t = tf.convert_to_tensor(img) t = tf.image.resize(t, shape[:2]) t = tf.cast(t, tf.float32) return t def norm_tensor(self, shape): return self.tensor(shape)/255. def write(self, img): assert img.dtype == np.uint8 print("Writing image ", self.filename()) cv2.imwrite(self.filename(), img) def copy(self): return dataclasses.replace(self) class Dataset: def __init__(self, name, oocytes, images_path:str, annotations_path:Optional[str]=None, image_extension=".png", stages=[IMMATURE, MATURE], create_folders=False): self.name = name self.oocytes = oocytes self.stages = stages print("Number of oocytes for dataset ", name, ":", len(self.oocytes)) # root path with subfolders immature / mature if os.path.isabs(images_path): rooted_images_path = Path(images_path) else: rooted_images_path = AIX_DATA / images_path if annotations_path is not None: if os.path.isabs(annotations_path): rooted_annotations_path = Path(annotations_path) else: # !="" and not os.path.isabs(annotations_path) and annotations_path[:2]!="./"): rooted_annotations_path = AIX_DATA / annotations_path else: rooted_annotations_path = None # Check if create_folders: init_path(rooted_images_path, stages) if rooted_annotations_path is not None: init_path(rooted_annotations_path, stages) else: for subfold in stages: if not (rooted_images_path / subfold).is_dir(): raise Exception("Path "+ str(rooted_images_path) +" not found.") if rooted_annotations_path is not None and not (rooted_annotations_path / subfold).is_dir(): raise Exception("Path "+ str(rooted_annotations_path) +" not found.") self.images_path = images_path self.annotations_path = annotations_path self.rooted_images_path = rooted_images_path self.rooted_annotations_path = rooted_annotations_path self.extension = image_extension @staticmethod def from_folder(name, folder_name, images_path, annotations_path, image_extension=".png"): if not Path(folder_name).is_dir(): raise Exception("Path "+folder_name+" not found.") oocytes = sorted(f.stem for f in Path(folder_name).iterdir() if f.suffix == image_extension) return Dataset(name, oocytes, images_path, annotations_path, image_extension) @staticmethod def from_file(file_name: Path): if not Path(file_name).is_file(): raise Exception("File "+str(file_name)+" not found") json_data = open(file_name).read() data = json.loads(json_data) if "image_extension" not in data: data['image_extension'] = ".png" dataset = Dataset(data["name"], data["oocytes"], data["images"], data["annotations"], data["image_extension"]) return dataset @staticmethod def create(name, images_path:str, annotations_path:str, image_extension=".png", stages=[IMMATURE, MATURE]): #init_path(AIX_DATA / images_path, stages) #if annotations_path!="": # init_path(AIX_DATA / annotations_path, stages) return Dataset(name, [], images_path, annotations_path, image_extension, create_folders=True) def num_images(self): return len(self.stages)*len(self.oocytes) def save(self, file_name): d = {"name": self.name, "oocytes" : self.oocytes, "image_extension": self.extension, "images": str(self.images_path), "annotations": str(self.annotations_path)} with open(file_name, "w") as f: f.write(json.dumps(d)) def has_annotations(self): return self.annotations_path is not None def new_item(self, mask=False, stage="", index=""): return Item(self, mask, index=index, stage=stage, extension=self.extension) def cv_item_iterator(self, k=10, seed=42, maturity=None): random_arr = np.arange(len(self.oocytes)) np.random.seed(seed) np.random.shuffle(random_arr) oocyte_items = [] mask_items = [] for i in random_arr: oocyte_index = self.oocytes[i] if maturity is None or maturity == IMMATURE: oocyte_items.append(self.new_item(mask=False, stage=IMMATURE, index=oocyte_index)) mask_items.append(self.new_item(mask=True, stage=IMMATURE, index=oocyte_index)) if maturity is None or maturity == MATURE: oocyte_items.append(self.new_item(mask=False, stage=MATURE, index=oocyte_index)) mask_items.append(self.new_item(mask=True, stage=MATURE, index=oocyte_index)) fold_sizes = np.repeat(len(self.oocytes)// k, k) # Adjust sizes when len no multiple of k fold_sizes[:len(self.oocytes) % k] += 1 if maturity is None: fold_sizes *= 2 num_fold = np.repeat(np.arange(k), fold_sizes) oocyte_items = np.array(oocyte_items) mask_items = np.array(mask_items) for fold in range(k): x_train = oocyte_items[num_fold != fold] y_train = mask_items[num_fold != fold] x_test = oocyte_items[num_fold == fold] y_test = mask_items[num_fold == fold] yield x_train, x_test, y_train, y_test @classmethod def tf_dataset_from_items(cls, x, y, image_shape, mask_shape): def f(): for x_item, y_item in zip(x, y): yield x_item.tensor(image_shape), y_item.norm_tensor(mask_shape) return tf.data.Dataset.from_generator(f, output_signature=(tf.TensorSpec(shape=image_shape, dtype=tf.float32), tf.TensorSpec(shape=mask_shape, dtype=tf.float32))) def cv_tf_dataset_iterator(self, image_shape, mask_shape, k=10, seed=42, maturity=None): for x_train, x_test, y_train, y_test in self.cv_item_iterator(k=k, seed=seed, maturity=maturity): train = self.tf_dataset_from_items(x_train, y_train, image_shape, mask_shape) test = self.tf_dataset_from_items(x_test, y_test, image_shape, mask_shape) yield (x_train, y_train), train, (x_test, y_test), test def train_test_iterator(self, k=10, seed=42): random_arr = np.arange(len(self.oocytes)) np.random.seed(seed) np.random.shuffle(random_arr) image_files = [] mask_files = [] for idx in random_arr: for stage in self.stages: image_files.append((Path(self.rooted_images_path) / stage / (self.oocytes[idx])).as_posix()) mask_files.append((Path(self.rooted_annotations_path) / stage / (self.oocytes[idx])).as_posix()) fold_sizes = np.repeat(len(self.oocytes)// k, k) # Adjust sizes when len no multiple of k fold_sizes[:len(self.oocytes) % k] += 1 num_fold = np.repeat(np.arange(10), fold_sizes * 2) image_files = np.array(image_files) mask_files = np.array(mask_files) for fold in range(k): x_train = image_files[num_fold!=fold] y_train = mask_files[num_fold!=fold] x_test = image_files[num_fold==fold] y_test = mask_files[num_fold==fold] yield x_train, x_test, y_train, y_test def train_test_split(self, percent=90, seed=42): random_arr = np.arange(len(self.oocytes)) np.random.seed(seed) np.random.shuffle(random_arr) first_test = math.floor(percent * len(self.oocytes)/100.) oocytes_a = np.array(self.oocytes) train_oocytes = list(oocytes_a[:first_test]) test_oocytes = list(oocytes_a[first_test:]) train_ds = Dataset(self.name+"train", train_oocytes, self.images_path, self.annotations_path) test_ds = Dataset(self.name+"test", test_oocytes, self.images_path, self.annotations_path) return train_ds, test_ds def tfDataset(self): idx = self.oocytes[0] image_shape = self.new_item(mask=False, stage=IMMATURE, index=idx).tensor().shape mask_shape = self.new_item(mask=True, stage=IMMATURE, index=idx).tensor().shape return tf.data.Dataset.from_generator(self.iterate_pairs, output_signature=(tf.TensorSpec(shape=image_shape, dtype=tf.float32), tf.TensorSpec(shape=mask_shape, dtype=tf.float32))) def tfDataset_fixed_shape(self, image_shape, mask_shape): def f(): for x_item, y_item in self.iterate_pairs(tensor=False): yield x_item.tensor(image_shape), y_item.norm_tensor(mask_shape) return tf.data.Dataset.from_generator(f, output_signature=(tf.TensorSpec(shape=image_shape, dtype=tf.float32), tf.TensorSpec(shape=mask_shape, dtype=tf.float32))) def iterate_pairs(self, tensor=True): for idx in self.oocytes: for stage in self.stages: x = self.new_item(mask=False, stage=stage, index=idx) y = self.new_item(mask=True, stage=stage, index=idx) if tensor: x = x.tensor() y = y.tensor() yield x, y def iterate_items(self): for idx in self.oocytes: for stage in self.stages: yield self.new_item(mask=False, stage=stage, index=idx) yield self.new_item(mask=True, stage=stage, index=idx) def iterate_oocyte_items(self, tensor=True): for idx in self.oocytes: for stage in self.stages: x = self.new_item(mask=False, stage=stage, index=idx) if tensor: x = x.tensor() yield x def iterate_mask_items(self): for idx in self.oocytes: for stage in self.stages: yield self.new_item(mask=True, stage=stage, index=idx) def iterate_oocyte_masks(self): for idx in self.oocytes: masks = [] for stage in self.stages: x = self.new_item(mask=True, stage=stage, index=idx) masks.append(x) yield masks def __repr__(self): return "".format(self.name) def add_oocyte(self, index): if index not in self.oocytes: self.oocytes.append(index)