COCAM / utils.py
cerquide's picture
Added remaining files
347a369
raw
history blame
5.12 kB
import numpy as np
import gzip
from pathlib import Path
import tempfile
import cv2
import tensorflow as tf
import skimage.morphology
import skimage.filters.rank
import skimage.util
from tensorflow.keras.models import load_model
from aix.utils import hardened_dice_coef
from aix.losses import dice_loss
class AreaModel:
def __init__(self, model_path="model/majority_roi_production.keras"):
self.model_path = model_path
self.model = load_model(model_path)
self.IMG_SIZE = (192, 240)
self.INPUT_CHANNELS = 1
self.IMG_SHAPE = (self.IMG_SIZE[0], self.IMG_SIZE[1], self.INPUT_CHANNELS)
self.MASK_SHAPE = (self.IMG_SIZE[0], self.IMG_SIZE[1], 1)
def compute_area(self, img):
roi_img = roi(img)
roi_shape = roi_img.shape
#print(roi_img.dtype, roi_shape)
t_img = tensor(roi_img, self.IMG_SHAPE)
y = self.model.predict(x=t_img)
mask = y[0]
#print(roi_shape)
resized_mask = tf.image.resize(mask, roi_shape)
area = np.sum(resized_mask)
return area, roi_img, resized_mask
def image_to_file_path(image):
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_file.write(image.read())
return temp_file.name
def raw_image(file_path, remove_alpha=True):
img = cv2.imread(file_path, cv2.IMREAD_GRAYSCALE)
#print(img.shape)
if len(img.shape) == 3 and img.shape[2] == 4:
#print("The image is in RGBA format. We remove the A")
img = img[:, :, :3]
return img
def tensor(img, shape):
#img = raw_image(file_path, cv2.IMREAD_GRAYSCALE)
if len(img.shape) == 2:
img.shape = (img.shape[0], img.shape[1], 1)
t = tf.convert_to_tensor(img)
t = tf.image.resize(t, shape[:2])
t = tf.reshape(t, (1, *shape))
t = tf.cast(t, tf.float32)
return t
def roi(cv2_img):
roi, (left, top), (right, bottom) = extract_roi(cv2_img / 255., filled=True, border=.01)
#print("ROI found", (left, top), (right, bottom))
return cv2_img[top:bottom, left:right]
def overlay_mask_on_image(image, mask, alpha=0.1, mask_color=(0, 255, 0)):
"""
Overlays a mask on an image.
Args:
image (np.array): The original image.
mask (np.array): The mask to overlay.
alpha (float): The opacity of the mask.
mask_color (tuple): The color to use for the mask.
Returns:
np.array: The image with the mask overlay.
"""
rgb_image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
colored_mask = np.zeros_like(rgb_image)
#print(colored_mask.shape)
#print(mask.shape)
colored_mask[:, :, 0] = mask_color[0] * mask[:, :, 0]
colored_mask[:, :, 1] = mask_color[1] * mask[:, :, 0]
colored_mask[:, :, 2] = mask_color[2] * mask[:, :, 0]
#colored_mask *= mask
# Overlay the mask on the image
overlay = cv2.addWeighted(rgb_image, 1, colored_mask, alpha, 0)
return overlay
def local_entropy(im, kernel_size=5, normalize=True):
kernel=skimage.morphology.disk(kernel_size)
entr_img = skimage.filters.rank.entropy(skimage.util.img_as_ubyte(im), kernel)
if normalize:
max_img = np.max(entr_img)
entr_img = (entr_img*255/max_img).astype(np.uint8)
return entr_img
def calc_dim(contour):
c_0 = [ point[0][0] for point in contour]
c_1 = [ point[0][1] for point in contour]
return (min(c_0), max(c_0), min(c_1), max(c_1))
def calc_size(dim):
return (dim[1] - dim[0]) * (dim[3] - dim[2])
def calc_dist(dim1, dim2):
return None
def extract_roi(img, threshold=135, kernel_size=5, min_fratio=.3, max_sratio=5, filled=True, border=.01):
entr_img = local_entropy(img, kernel_size=kernel_size)
_, mask = cv2.threshold(entr_img, threshold, 255, cv2.THRESH_BINARY)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
contours_d = [calc_dim(c) for c in contours]
contours_sizes = [calc_size(c) for c in contours_d]
contour_indices = np.argsort(contours_sizes)[::-1]
# remove artifacts
fratio = min_fratio
sratio = max_sratio
idx = -1
while fratio<=min_fratio or sratio>=max_sratio:
idx += 1
biggest = contour_indices[idx]
filled_mask = np.zeros(img.shape, dtype=np.uint8)
filled_mask = cv2.fillPoly(filled_mask, [contours[biggest]], 255)
fratio = filled_mask.sum()/255/contours_sizes[biggest]
cdim = contours_d[biggest]
sratio = (cdim[3]-cdim[2])/(cdim[1]-cdim[0])
if sratio<1: sratio = 1 / sratio
#print(fratio, sratio, cdim, filled_mask.sum()//255)
# generating the mask
filled_mask = np.zeros(img.shape, dtype=np.uint8)
extra = ( int(img.shape[0] * border) , int(img.shape[1] * border) )
origin = (max(0, cdim[0]-extra[1]), max(0, cdim[2]-extra[0]))
to = (min(img.shape[1]-1 , cdim[1]+extra[1]), min(img.shape[0]-1 , cdim[3]+extra[0]))
if filled:
filled_mask = cv2.rectangle(filled_mask, origin, to, 255, -1)
else:
filled_mask = cv2.rectangle(filled_mask, origin, to, 255, 2)
return filled_mask, origin, to