File size: 5,902 Bytes
8ca3a29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# python3.7
"""Contains utility functions used for formatting."""

import cv2
import numpy as np

__all__ = [
    'format_time', 'format_range', 'format_image_size', 'format_image',
    'raw_label_to_one_hot', 'one_hot_to_raw_label'
]


def format_time(seconds):
    """Formats seconds to readable time string.

    Args:
        seconds: Number of seconds to format.

    Returns:
        The formatted time string.

    Raises:
        ValueError: If the input `seconds` is less than 0.
    """
    if seconds < 0:
        raise ValueError(f'Input `seconds` should be greater than or equal to '
                         f'0, but `{seconds}` is received!')

    # Returns seconds as float if less than 1 minute.
    if seconds < 10:
        return f'{seconds:7.3f} s'
    if seconds < 60:
        return f'{seconds:7.2f} s'

    seconds = int(seconds + 0.5)
    days, seconds = divmod(seconds, 86400)
    hours, seconds = divmod(seconds, 3600)
    minutes, seconds = divmod(seconds, 60)
    if days:
        return f'{days:2d} d {hours:02d} h'
    if hours:
        return f'{hours:2d} h {minutes:02d} m'
    return f'{minutes:2d} m {seconds:02d} s'


def format_range(obj, min_val=None, max_val=None):
    """Formats the given object to a valid range.

    If `min_val` or `max_val` is provided, both the starting value and the end
    value will be clamped to range `[min_val, max_val]`.

    NOTE: (a, b) is regarded as a valid range if and only if `a <= b`.

    Args:
        obj: The input object to format.
        min_val: The minimum value to cut off the input range. If not provided,
            the default minimum value is negative infinity. (default: None)
        max_val: The maximum value to cut off the input range. If not provided,
            the default maximum value is infinity. (default: None)

    Returns:
        A two-elements tuple, indicating the start and the end of the range.

    Raises:
        ValueError: If the input object is an invalid range.
    """
    if not isinstance(obj, (tuple, list)):
        raise ValueError(f'Input object must be a tuple or a list, '
                         f'but `{type(obj)}` received!')
    if len(obj) != 2:
        raise ValueError(f'Input object is expected to contain two elements, '
                         f'but `{len(obj)}` received!')
    if obj[0] > obj[1]:
        raise ValueError(f'The second element is expected to be equal to or '
                         f'greater than the first one, '
                         f'but `({obj[0]}, {obj[1]})` received!')

    obj = list(obj)
    if min_val is not None:
        obj[0] = max(obj[0], min_val)
        obj[1] = max(obj[1], min_val)
    if max_val is not None:
        obj[0] = min(obj[0], max_val)
        obj[1] = min(obj[1], max_val)
    return tuple(obj)


def format_image_size(size):
    """Formats the given image size to a two-element tuple.

    A valid image size can be an integer, indicating both the height and the
    width, OR can be a two-element list or tuple. Both height and width are
    assumed to be positive integer.

    Args:
        size: The input size to format.

    Returns:
        A two-elements tuple, indicating the height and the width, respectively.

    Raises:
        ValueError: If the input size is invalid.
    """
    if not isinstance(size, (int, tuple, list)):
        raise ValueError(f'Input size must be an integer, a tuple, or a list, '
                         f'but `{type(size)}` received!')
    if isinstance(size, int):
        size = (size, size)
    else:
        if len(size) == 1:
            size = (size[0], size[0])
        if not len(size) == 2:
            raise ValueError(f'Input size is expected to have two numbers at '
                             f'most, but `{len(size)}` numbers received!')
    if not isinstance(size[0], int) or size[0] < 0:
        raise ValueError(f'The height is expected to be a non-negative '
                         f'integer, but `{size[0]}` received!')
    if not isinstance(size[1], int) or size[1] < 0:
        raise ValueError(f'The width is expected to be a non-negative '
                         f'integer, but `{size[1]}` received!')
    return tuple(size)


def format_image(image):
    """Formats an image read from `cv2`.

    NOTE: This function will always return a 3-dimensional image (i.e., with
    shape [H, W, C]) in pixel range [0, 255]. For color images, the channel
    order of the input is expected to be with `BGR` or `BGRA`, which is the
    raw image decoded by `cv2`; while the channel order of the output is set to
    `RGB` or `RGBA` by default.

    Args:
        image: `np.ndarray`, an image read by `cv2.imread()` or
            `cv2.imdecode()`.

    Returns:
        An image with shape [H, W, C] (where `C = 1` for grayscale image).
    """
    if image.ndim == 2:  # add additional axis if given a grayscale image
        image = image[:, :, np.newaxis]

    assert isinstance(image, np.ndarray)
    assert image.dtype == np.uint8
    assert image.ndim == 3 and image.shape[2] in [1, 3, 4]

    if image.shape[2] == 3:  # BGR image
        return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    if image.shape[2] == 4:  # BGRA image
        return cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA)
    return image


def raw_label_to_one_hot(raw_label, num_classes):
    """Converts a single label into one-hot vector.

    Args:
        raw_label: The raw label.
        num_classes: Total number of classes.

    Returns:
        one-hot vector of the given raw label.
    """
    one_hot = np.zeros(num_classes, dtype=np.float32)
    one_hot[raw_label] = 1.0
    return one_hot


def one_hot_to_raw_label(one_hot):
    """Converts a one-hot vector to a single value label.

    Args:
        one_hot: `np.ndarray`, a one-hot encoded vector.

    Returns:
        A single integer to represent the category.
    """
    return np.argmax(one_hot)