File size: 22,232 Bytes
8ca3a29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
# python3.7
"""Contains the implementation of encoder used in GH-Feat (including IDInvert).
ResNet is used as the backbone.
GH-Feat paper: https://arxiv.org/pdf/2007.10379.pdf
IDInvert paper: https://arxiv.org/pdf/2004.00049.pdf
NOTE: Please use `latent_num` and `num_latents_per_head` to control the
inversion space, such as Y-space used in GH-Feat and W-space used in IDInvert.
In addition, IDInvert sets `use_fpn` and `use_sam` as `False` by default.
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
__all__ = ['GHFeatEncoder']
# Resolutions allowed.
_RESOLUTIONS_ALLOWED = [8, 16, 32, 64, 128, 256, 512, 1024]
# pylint: disable=missing-function-docstring
class BasicBlock(nn.Module):
"""Implementation of ResNet BasicBlock."""
expansion = 1
def __init__(self,
inplanes,
planes,
base_width=64,
stride=1,
groups=1,
dilation=1,
norm_layer=None,
downsample=None):
super().__init__()
if base_width != 64:
raise ValueError(f'BasicBlock of ResNet only supports '
f'`base_width=64`, but {base_width} received!')
if stride not in [1, 2]:
raise ValueError(f'BasicBlock of ResNet only supports `stride=1` '
f'and `stride=2`, but {stride} received!')
if groups != 1:
raise ValueError(f'BasicBlock of ResNet only supports `groups=1`, '
f'but {groups} received!')
if dilation != 1:
raise ValueError(f'BasicBlock of ResNet only supports '
f'`dilation=1`, but {dilation} received!')
assert self.expansion == 1
self.stride = stride
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self.conv1 = nn.Conv2d(in_channels=inplanes,
out_channels=planes,
kernel_size=3,
stride=stride,
padding=1,
groups=1,
dilation=1,
bias=False)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(in_channels=planes,
out_channels=planes,
kernel_size=3,
stride=1,
padding=1,
groups=1,
dilation=1,
bias=False)
self.bn2 = norm_layer(planes)
self.downsample = downsample
def forward(self, x):
identity = self.downsample(x) if self.downsample is not None else x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out + identity)
return out
class Bottleneck(nn.Module):
"""Implementation of ResNet Bottleneck."""
expansion = 4
def __init__(self,
inplanes,
planes,
base_width=64,
stride=1,
groups=1,
dilation=1,
norm_layer=None,
downsample=None):
super().__init__()
if stride not in [1, 2]:
raise ValueError(f'Bottleneck of ResNet only supports `stride=1` '
f'and `stride=2`, but {stride} received!')
width = int(planes * (base_width / 64)) * groups
self.stride = stride
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self.conv1 = nn.Conv2d(in_channels=inplanes,
out_channels=width,
kernel_size=1,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=False)
self.bn1 = norm_layer(width)
self.conv2 = nn.Conv2d(in_channels=width,
out_channels=width,
kernel_size=3,
stride=stride,
padding=dilation,
groups=groups,
dilation=dilation,
bias=False)
self.bn2 = norm_layer(width)
self.conv3 = nn.Conv2d(in_channels=width,
out_channels=planes * self.expansion,
kernel_size=1,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=False)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x):
identity = self.downsample(x) if self.downsample is not None else x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out = self.relu(out + identity)
return out
class GHFeatEncoder(nn.Module):
"""Define the ResNet-based encoder network for GAN inversion.
On top of the backbone, there are several task-heads to produce inverted
codes. Please use `latent_dim` and `num_latents_per_head` to define the
structure. For example, `latent_dim = [512] * 14` and
`num_latents_per_head = [4, 4, 6]` can be used for StyleGAN inversion with
14-layer latent codes, where 3 task heads (corresponding to 4, 4, 6 layers,
respectively) are used.
Settings for the encoder network:
(1) resolution: The resolution of the output image.
(2) latent_dim: Dimension of the latent space. A number (one code will be
produced), or a list of numbers regarding layer-wise latent codes.
(3) num_latents_per_head: Number of latents that is produced by each head.
(4) image_channels: Number of channels of the output image. (default: 3)
(5) final_res: Final resolution of the convolutional layers. (default: 4)
ResNet-related settings:
(1) network_depth: Depth of the network, like 18 for ResNet18. (default: 18)
(2) inplanes: Number of channels of the first convolutional layer.
(default: 64)
(3) groups: Groups of the convolution, used in ResNet. (default: 1)
(4) width_per_group: Number of channels per group, used in ResNet.
(default: 64)
(5) replace_stride_with_dilation: Whether to replace stride with dilation,
used in ResNet. (default: None)
(6) norm_layer: Normalization layer used in the encoder. If set as `None`,
`nn.BatchNorm2d` will be used. Also, please NOTE that when using batch
normalization, the batch size is required to be larger than one for
training. (default: nn.BatchNorm2d)
(7) max_channels: Maximum number of channels in each layer. (default: 512)
Task-head related settings:
(1) use_fpn: Whether to use Feature Pyramid Network (FPN) before outputting
the latent code. (default: True)
(2) fpn_channels: Number of channels used in FPN. (default: 512)
(3) use_sam: Whether to use Spatial Alignment Module (SAM) before outputting
the latent code. (default: True)
(4) sam_channels: Number of channels used in SAM. (default: 512)
"""
arch_settings = {
18: (BasicBlock, [2, 2, 2, 2]),
34: (BasicBlock, [3, 4, 6, 3]),
50: (Bottleneck, [3, 4, 6, 3]),
101: (Bottleneck, [3, 4, 23, 3]),
152: (Bottleneck, [3, 8, 36, 3])
}
def __init__(self,
resolution,
latent_dim,
num_latents_per_head,
image_channels=3,
final_res=4,
network_depth=18,
inplanes=64,
groups=1,
width_per_group=64,
replace_stride_with_dilation=None,
norm_layer=nn.BatchNorm2d,
max_channels=512,
use_fpn=True,
fpn_channels=512,
use_sam=True,
sam_channels=512):
super().__init__()
if resolution not in _RESOLUTIONS_ALLOWED:
raise ValueError(f'Invalid resolution: `{resolution}`!\n'
f'Resolutions allowed: {_RESOLUTIONS_ALLOWED}.')
if network_depth not in self.arch_settings:
raise ValueError(f'Invalid network depth: `{network_depth}`!\n'
f'Options allowed: '
f'{list(self.arch_settings.keys())}.')
if isinstance(latent_dim, int):
latent_dim = [latent_dim]
assert isinstance(latent_dim, (list, tuple))
assert isinstance(num_latents_per_head, (list, tuple))
assert sum(num_latents_per_head) == len(latent_dim)
self.resolution = resolution
self.latent_dim = latent_dim
self.num_latents_per_head = num_latents_per_head
self.num_heads = len(self.num_latents_per_head)
self.image_channels = image_channels
self.final_res = final_res
self.inplanes = inplanes
self.network_depth = network_depth
self.groups = groups
self.dilation = 1
self.base_width = width_per_group
self.replace_stride_with_dilation = replace_stride_with_dilation
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if norm_layer == nn.BatchNorm2d and dist.is_initialized():
norm_layer = nn.SyncBatchNorm
self.norm_layer = norm_layer
self.max_channels = max_channels
self.use_fpn = use_fpn
self.fpn_channels = fpn_channels
self.use_sam = use_sam
self.sam_channels = sam_channels
block_fn, num_blocks_per_stage = self.arch_settings[network_depth]
self.num_stages = int(np.log2(resolution // final_res)) - 1
# Add one block for additional stages.
for i in range(len(num_blocks_per_stage), self.num_stages):
num_blocks_per_stage.append(1)
if replace_stride_with_dilation is None:
replace_stride_with_dilation = [False] * self.num_stages
# Backbone.
self.conv1 = nn.Conv2d(in_channels=self.image_channels,
out_channels=self.inplanes,
kernel_size=7,
stride=2,
padding=3,
bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.stage_channels = [self.inplanes]
self.stages = nn.ModuleList()
for i in range(self.num_stages):
inplanes = self.inplanes if i == 0 else planes * block_fn.expansion
planes = min(self.max_channels, self.inplanes * (2 ** i))
num_blocks = num_blocks_per_stage[i]
stride = 1 if i == 0 else 2
dilate = replace_stride_with_dilation[i]
self.stages.append(self._make_stage(block_fn=block_fn,
inplanes=inplanes,
planes=planes,
num_blocks=num_blocks,
stride=stride,
dilate=dilate))
self.stage_channels.append(planes * block_fn.expansion)
if self.num_heads > len(self.stage_channels):
raise ValueError('Number of task heads is larger than number of '
'stages! Please reduce the number of heads.')
# Task-head.
if self.num_heads == 1:
self.use_fpn = False
self.use_sam = False
if self.use_fpn:
fpn_pyramid_channels = self.stage_channels[-self.num_heads:]
self.fpn = FPN(pyramid_channels=fpn_pyramid_channels,
out_channels=self.fpn_channels)
if self.use_sam:
if self.use_fpn:
sam_pyramid_channels = [self.fpn_channels] * self.num_heads
else:
sam_pyramid_channels = self.stage_channels[-self.num_heads:]
self.sam = SAM(pyramid_channels=sam_pyramid_channels,
out_channels=self.sam_channels)
self.heads = nn.ModuleList()
for head_idx in range(self.num_heads):
# Parse in_channels.
if self.use_sam:
in_channels = self.sam_channels
elif self.use_fpn:
in_channels = self.fpn_channels
else:
in_channels = self.stage_channels[head_idx - self.num_heads]
in_channels = in_channels * final_res * final_res
# Parse out_channels.
start_latent_idx = sum(self.num_latents_per_head[:head_idx])
end_latent_idx = sum(self.num_latents_per_head[:head_idx + 1])
out_channels = sum(self.latent_dim[start_latent_idx:end_latent_idx])
self.heads.append(CodeHead(in_channels=in_channels,
out_channels=out_channels,
norm_layer=self.norm_layer))
def _make_stage(self,
block_fn,
inplanes,
planes,
num_blocks,
stride,
dilate):
norm_layer = self.norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or inplanes != planes * block_fn.expansion:
downsample = nn.Sequential(
nn.Conv2d(in_channels=inplanes,
out_channels=planes * block_fn.expansion,
kernel_size=1,
stride=stride,
padding=0,
dilation=1,
groups=1,
bias=False),
norm_layer(planes * block_fn.expansion),
)
blocks = []
blocks.append(block_fn(inplanes=inplanes,
planes=planes,
base_width=self.base_width,
stride=stride,
groups=self.groups,
dilation=previous_dilation,
norm_layer=norm_layer,
downsample=downsample))
for _ in range(1, num_blocks):
blocks.append(block_fn(inplanes=planes * block_fn.expansion,
planes=planes,
base_width=self.base_width,
stride=1,
groups=self.groups,
dilation=self.dilation,
norm_layer=norm_layer,
downsample=None))
return nn.Sequential(*blocks)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
features = [x]
for i in range(self.num_stages):
x = self.stages[i](x)
features.append(x)
features = features[-self.num_heads:]
if self.use_fpn:
features = self.fpn(features)
if self.use_sam:
features = self.sam(features)
else:
final_size = features[-1].shape[2:]
for i in range(self.num_heads - 1):
features[i] = F.adaptive_avg_pool2d(features[i], final_size)
outputs = []
for head_idx in range(self.num_heads):
codes = self.heads[head_idx](features[head_idx])
start_latent_idx = sum(self.num_latents_per_head[:head_idx])
end_latent_idx = sum(self.num_latents_per_head[:head_idx + 1])
split_size = self.latent_dim[start_latent_idx:end_latent_idx]
outputs.extend(torch.split(codes, split_size, dim=1))
max_dim = max(self.latent_dim)
for i, dim in enumerate(self.latent_dim):
if dim < max_dim:
outputs[i] = F.pad(outputs[i], (0, max_dim - dim))
outputs[i] = outputs[i].unsqueeze(1)
return torch.cat(outputs, dim=1)
class FPN(nn.Module):
"""Implementation of Feature Pyramid Network (FPN).
The input of this module is a pyramid of features with reducing resolutions.
Then, this module fuses these multi-level features from `top_level` to
`bottom_level`. In particular, starting from the `top_level`, each feature
is convoluted, upsampled, and fused into its previous feature (which is also
convoluted).
Args:
pyramid_channels: A list of integers, each of which indicates the number
of channels of the feature from a particular level.
out_channels: Number of channels for each output.
Returns:
A list of feature maps, each of which has `out_channels` channels.
"""
def __init__(self, pyramid_channels, out_channels):
super().__init__()
assert isinstance(pyramid_channels, (list, tuple))
self.num_levels = len(pyramid_channels)
self.lateral_layers = nn.ModuleList()
self.feature_layers = nn.ModuleList()
for i in range(self.num_levels):
in_channels = pyramid_channels[i]
self.lateral_layers.append(nn.Conv2d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
padding=1,
bias=True))
self.feature_layers.append(nn.Conv2d(in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
padding=1,
bias=True))
def forward(self, inputs):
if len(inputs) != self.num_levels:
raise ValueError('Number of inputs and `num_levels` mismatch!')
# Project all related features to `out_channels`.
laterals = []
for i in range(self.num_levels):
laterals.append(self.lateral_layers[i](inputs[i]))
# Fusion, starting from `top_level`.
for i in range(self.num_levels - 1, 0, -1):
scale_factor = laterals[i - 1].shape[2] // laterals[i].shape[2]
laterals[i - 1] = (laterals[i - 1] +
F.interpolate(laterals[i],
mode='nearest',
scale_factor=scale_factor))
# Get outputs.
outputs = []
for i, lateral in enumerate(laterals):
outputs.append(self.feature_layers[i](lateral))
return outputs
class SAM(nn.Module):
"""Implementation of Spatial Alignment Module (SAM).
The input of this module is a pyramid of features with reducing resolutions.
Then this module downsamples all levels of feature to the minimum resolution
and fuses it with the smallest feature map.
Args:
pyramid_channels: A list of integers, each of which indicates the number
of channels of the feature from a particular level.
out_channels: Number of channels for each output.
Returns:
A list of feature maps, each of which has `out_channels` channels.
"""
def __init__(self, pyramid_channels, out_channels):
super().__init__()
assert isinstance(pyramid_channels, (list, tuple))
self.num_levels = len(pyramid_channels)
self.fusion_layers = nn.ModuleList()
for i in range(self.num_levels):
in_channels = pyramid_channels[i]
self.fusion_layers.append(nn.Conv2d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
padding=1,
bias=True))
def forward(self, inputs):
if len(inputs) != self.num_levels:
raise ValueError('Number of inputs and `num_levels` mismatch!')
output_res = inputs[-1].shape[2:]
for i in range(self.num_levels - 1, -1, -1):
if i != self.num_levels - 1:
inputs[i] = F.adaptive_avg_pool2d(inputs[i], output_res)
inputs[i] = self.fusion_layers[i](inputs[i])
if i != self.num_levels - 1:
inputs[i] = inputs[i] + inputs[-1]
return inputs
class CodeHead(nn.Module):
"""Implementation of the task-head to produce inverted codes."""
def __init__(self, in_channels, out_channels, norm_layer):
super().__init__()
self.fc = nn.Linear(in_channels, out_channels, bias=True)
if norm_layer is None:
self.norm = nn.Identity()
else:
self.norm = norm_layer(out_channels)
def forward(self, x):
if x.ndim > 2:
x = x.flatten(start_dim=1)
latent = self.fc(x)
latent = latent.unsqueeze(2).unsqueeze(3)
latent = self.norm(latent)
return latent.flatten(start_dim=1)
# pylint: enable=missing-function-docstring
|