|
from llama_cpp import Llama |
|
|
|
|
|
llm = Llama.from_pretrained( |
|
repo_id="hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF", |
|
filename="llama-3.2-1b-instruct-q4_k_m.gguf" |
|
) |
|
|
|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from llama_cpp import Llama |
|
|
|
|
|
llm = Llama.from_pretrained( |
|
repo_id="hugging-quants/Llama-3.2-1B-Instruct-Q4_K_M-GGUF", |
|
filename="llama-3.2-1b-instruct-q4_k_m.gguf" |
|
) |
|
|
|
app = FastAPI() |
|
|
|
class ChatRequest(BaseModel): |
|
message: str |
|
|
|
@app.post("/chat") |
|
async def chat_completion(request: ChatRequest): |
|
try: |
|
response = llm.create_chat_completion( |
|
messages=[ |
|
{"role": "user", "content": request.message} |
|
] |
|
) |
|
return { |
|
"response": response['choices'][0]['message']['content'] |
|
} |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |