File size: 13,208 Bytes
c207609 e169f05 c207609 e169f05 c207609 e169f05 c207609 e169f05 c207609 e169f05 c207609 4d00003 c207609 3309ae3 c207609 3309ae3 57063e2 3309ae3 c207609 e169f05 c207609 3309ae3 c207609 e169f05 c207609 3309ae3 c207609 e169f05 3309ae3 e169f05 2f14a71 e169f05 c207609 e169f05 c207609 e169f05 57063e2 cbe641c 57063e2 cbe641c c207609 57063e2 c207609 3309ae3 c207609 3309ae3 c207609 57063e2 c207609 3309ae3 c207609 3309ae3 c207609 4d00003 c207609 3309ae3 a6d4212 3309ae3 57063e2 3309ae3 e169f05 57063e2 c207609 57063e2 c207609 57063e2 e169f05 3dbc61d 57063e2 3dbc61d 3309ae3 c207609 e169f05 c207609 57063e2 004554c c207609 3309ae3 2f14a71 3309ae3 2f14a71 3309ae3 fcec4cf e169f05 c207609 3309ae3 c207609 3309ae3 c207609 3309ae3 c207609 3309ae3 c207609 5b852d3 57063e2 3309ae3 57063e2 3309ae3 57063e2 c207609 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import json
import os
import shutil
import gradio as gr
from huggingface_hub import Repository
from text_generation import Client
from dialogues import DialogueTemplate
from share_btn import (community_icon_html, loading_icon_html, share_btn_css,
share_js)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
API_TOKEN = os.environ.get("API_TOKEN", None)
API_URL = os.environ.get("API_URL", None)
client = Client(
API_URL,
headers={"Authorization": f"Bearer {API_TOKEN}"},
)
# theme = gr.themes.Monochrome(
# primary_hue="indigo",
# secondary_hue="blue",
# neutral_hue="slate",
# radius_size=gr.themes.sizes.radius_sm,
# font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
# )
if HF_TOKEN:
try:
shutil.rmtree("./data/")
except:
pass
repo = Repository(
local_dir="./data/", clone_from="HuggingFaceH4/starchat-prompts", use_auth_token=HF_TOKEN, repo_type="dataset"
)
repo.git_pull()
def save_inputs_and_outputs(inputs, outputs, generate_kwargs):
with open(os.path.join("data", "prompts.jsonl"), "a") as f:
json.dump({"inputs": inputs, "outputs": outputs, "generate_kwargs": generate_kwargs}, f, ensure_ascii=False)
f.write("\n")
repo.push_to_hub()
def get_total_inputs(inputs, chatbot, preprompt, user_name, assistant_name, sep):
past = []
for data in chatbot:
user_data, model_data = data
if not user_data.startswith(user_name):
user_data = user_name + user_data
if not model_data.startswith(sep + assistant_name):
model_data = sep + assistant_name + model_data
past.append(user_data + model_data.rstrip() + sep)
if not inputs.startswith(user_name):
inputs = user_name + inputs
total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()
return total_inputs
def has_no_history(chatbot, history):
return not chatbot and not history
def generate(
system_message,
user_message,
chatbot,
history,
temperature,
top_k,
top_p,
max_new_tokens,
repetition_penalty,
do_save=True,
):
# Don't return meaningless message when the input is empty
if not user_message:
return chatbot, history, user_message, ""
history.append(user_message)
past_messages = []
for data in chatbot:
user_data, model_data = data
past_messages.extend(
[{"role": "user", "content": user_data}, {"role": "assistant", "content": model_data.rstrip()}]
)
if len(past_messages) < 1:
dialogue_template = DialogueTemplate(
system=system_message, messages=[{"role": "user", "content": user_message}]
)
prompt = dialogue_template.get_inference_prompt()
else:
dialogue_template = DialogueTemplate(
system=system_message, messages=past_messages + [{"role": "user", "content": user_message}]
)
prompt = dialogue_template.get_inference_prompt()
generate_kwargs = {
"temperature": temperature,
"top_k": top_k,
"top_p": top_p,
"max_new_tokens": max_new_tokens,
}
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
truncate=999,
seed=42,
stop_sequences=["<|end|>"],
)
stream = client.generate_stream(
prompt,
**generate_kwargs,
)
output = ""
for idx, response in enumerate(stream):
if response.token.special:
continue
output += response.token.text
if idx == 0:
history.append(" " + output)
else:
history[-1] = output
chat = [(history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2)]
yield chat, history, user_message, ""
if HF_TOKEN and do_save:
try:
print("Pushing prompt and completion to the Hub")
save_inputs_and_outputs(prompt, output, generate_kwargs)
except Exception as e:
print(e)
return chat, history, user_message, ""
examples = [
"How can I write a Python function to generate the nth Fibonacci number?",
"How do I get the current date using shell commands? Explain how it works.",
"What's the meaning of life?",
"Write a function in Python to reverse words in a given string.",
]
def clear_chat():
return [], []
def process_example(args):
for [x, y] in generate(args):
pass
return [x, y]
title = """<h1 align="center">⭐ StarChat Playground 💬</h1>"""
custom_css = """
#banner-image {
display: block;
margin-left: auto;
margin-right: auto;
}
#chat-message {
font-size: 14px;
min-height: 300px;
}
"""
with gr.Blocks(analytics_enabled=False, css=custom_css) as demo:
gr.HTML(title)
with gr.Row():
with gr.Column():
gr.Image("thumbnail.png", elem_id="banner-image", show_label=False)
with gr.Column():
gr.Markdown(
"""
💻 This demo showcases an **alpha** version of **[StarChat](https://huggingface.co/HuggingFaceH4/starchat-alpha)**, a variant of **[StarCoderBase](https://huggingface.co/bigcode/starcoderbase)** that was fine-tuned on the [Dolly](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and [OpenAssistant](https://huggingface.co/datasets/OpenAssistant/oasst1) datasets to act as a helpful coding assistant. The base model has 16B parameters and was pretrained on one trillion tokens sourced from 80+ programming languages, GitHub issues, Git commits, and Jupyter notebooks (all permissively licensed).
📝 For more details, check out our [blog post]().
⚠️ **Intended Use**: this app and its [supporting model](https://huggingface.co/HuggingFaceH4/starchat-alpha) are provided as educational tools to explain large language model fine-tuning; not to serve as replacement for human expertise. In particular, this alpha version of **StarChat** has not been aligned to human preferences with techniques like RLHF, so the model can produce problematic outputs (especially when prompted to do so). For more details on the model's limitations in terms of factuality and biases, see the [model card](https://huggingface.co/HuggingFaceH4/starchat-alpha#bias-risks-and-limitations).
⚠️ **Data Collection**: by default, we are collecting the prompts entered in this app to further improve and evaluate the model. Do **NOT** share any personal or sensitive information while using the app! You can opt out of this data collection by removing the checkbox below.
"""
)
with gr.Row():
do_save = gr.Checkbox(
value=True,
label="Store data",
info="You agree to the storage of your prompt and generated text for research and development purposes:",
)
with gr.Accordion(label="System Prompt", open=False, elem_id="parameters-accordion"):
system_message = gr.Textbox(
elem_id="system-message",
placeholder="Below is a conversation between a human user and a helpful AI coding assistant.",
show_label=False,
)
with gr.Row():
with gr.Box():
output = gr.Markdown()
chatbot = gr.Chatbot(elem_id="chat-message", label="Chat")
with gr.Row():
with gr.Column(scale=3):
user_message = gr.Textbox(placeholder="Enter your message here", show_label=False, elem_id="q-input")
with gr.Row():
send_button = gr.Button("Send", elem_id="send-btn", visible=True)
# regenerate_button = gr.Button("Regenerate", elem_id="send-btn", visible=True)
clear_chat_button = gr.Button("Clear chat", elem_id="clear-btn", visible=True)
with gr.Accordion(label="Parameters", open=False, elem_id="parameters-accordion"):
temperature = gr.Slider(
label="Temperature",
value=0.2,
minimum=0.0,
maximum=1.0,
step=0.1,
interactive=True,
info="Higher values produce more diverse outputs",
)
top_k = gr.Slider(
label="Top-k",
value=50,
minimum=0.0,
maximum=100,
step=1,
interactive=True,
info="Sample from a shortlist of top-k tokens",
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.95,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=512,
step=4,
interactive=True,
info="The maximum numbers of new tokens",
)
repetition_penalty = gr.Slider(
label="Repetition Penalty",
value=1.2,
minimum=0.0,
maximum=10,
step=0.1,
interactive=True,
info="The parameter for repetition penalty. 1.0 means no penalty.",
)
# with gr.Group(elem_id="share-btn-container"):
# community_icon = gr.HTML(community_icon_html, visible=True)
# loading_icon = gr.HTML(loading_icon_html, visible=True)
# share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
with gr.Row():
gr.Examples(
examples=examples,
inputs=[user_message],
cache_examples=False,
fn=process_example,
outputs=[output],
)
history = gr.State([])
# To clear out "message" input textbox and use this to regenerate message
last_user_message = gr.State("")
user_message.submit(
generate,
inputs=[
system_message,
user_message,
chatbot,
history,
temperature,
top_k,
top_p,
max_new_tokens,
repetition_penalty,
do_save,
],
outputs=[chatbot, history, last_user_message, user_message],
)
send_button.click(
generate,
inputs=[
system_message,
user_message,
chatbot,
history,
temperature,
top_k,
top_p,
max_new_tokens,
repetition_penalty,
do_save,
],
outputs=[chatbot, history, last_user_message, user_message],
)
clear_chat_button.click(clear_chat, outputs=[chatbot, history])
# share_button.click(None, [], [], _js=share_js)
# with gr.Row():
# with gr.Column():
# gr.Image("StarCoderBanner.png", elem_id="banner-image", show_label=False)
# with gr.Column():
# gr.Markdown(
# """
# 💻 This demo showcases an instruction fine-tuned model based on **[StarCoder](https://huggingface.co/bigcode/starcoder)**, a 16B parameter model trained on one trillion tokens sourced from 80+ programming languages, GitHub issues, Git commits, and Jupyter notebooks (all permissively licensed).
# 🤗 With an enterprise-friendly license, 8,192 token context length, and fast large-batch inference via [multi-query attention](https://arxiv.org/abs/1911.02150), **StarCoder** is currently the best open-source choice for code-based applications.
# 📝 For more details, check out our [blog post]().
# ⚠️ **Intended Use**: this app and its [supporting model](https://huggingface.co/HuggingFaceH4/starcoderbase-finetuned-oasst1) are provided as educational tools to explain instruction fine-tuning; not to serve as replacement for human expertise. For more details on the model's limitations in terms of factuality and biases, see the [model card](https://huggingface.co/HuggingFaceH4/starcoderbase-finetuned-oasst1#bias-risks-and-limitations).
# ⚠️ **Data Collection**: by default, we are collecting the prompts entered in this app to further improve and evaluate the model. Do NOT share any personal or sensitive information while using the app! You can opt out of this data collection by removing the checkbox below.
# """
# )
demo.queue(concurrency_count=16).launch(debug=True)
|