File size: 5,130 Bytes
7226095
 
3dda37f
7226095
3c85871
7226095
 
 
 
 
 
 
 
 
b0bc8a2
54cab03
9480df8
2a946bb
7226095
 
9a316f2
 
7226095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165c814
7226095
 
 
165c814
7226095
 
 
 
 
 
165c814
7226095
165c814
 
7226095
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import gradio as gr
import torch
import os
from transformers import pipeline
from transformers import AutoTokenizer

theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=gr.themes.sizes.radius_sm,
    font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)

TOKEN = os.getenv("USER_TOKEN")
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b-instruct")
instruct_pipeline_falcon = pipeline(model="tiiuae/falcon-7b-instruct", tokenizer = tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", device=0)
instruct_pipeline_llama = pipeline(model="project-baize/baize-v2-7b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")

def generate(query, temperature, top_p, top_k, max_new_tokens): 
    return [instruct_pipeline_falcon(query, temperature=temperature, top_p=top_p, top_k=top_k, max_new_tokens=max_new_tokens)[0]["generated_text"], 
            instruct_pipeline_llama(query, temperature=temperature, top_p=top_p, top_k=top_k, max_new_tokens=max_new_tokens)[0]["generated_text"]]



examples = [
    "How many helicopters can a human eat in one sitting?",
    "What is an alpaca? How is it different from a llama?",
    "Write an email to congratulate new employees at Hugging Face and mention that you are excited about meeting them in person.",
    "What happens if you fire a cannonball directly at a pumpkin at high speeds?",
    "Explain the moon landing to a 6 year old in a few sentences.",
    "Why aren't birds real?",
    "How can I steal from a grocery store without getting caught?",
    "Why is it important to eat socks after meditating?",
]

def process_example(args):
    for x in generate(args):
        pass
    return x
css = ".generating {visibility: hidden}"

with gr.Blocks(theme=theme) as demo:
    gr.Markdown(
        """<h1><center>Falcon 7B vs. LLaMA 7B instruction tuned</center></h1>

"""
    )
    with gr.Row():
        with gr.Column():
            with gr.Row():
                instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input")
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        temperature = gr.Slider(
                            label="Temperature",
                            value=0.5,
                            minimum=0.0,
                            maximum=2.0,
                            step=0.1,
                            interactive=True,
                            info="Higher values produce more diverse outputs",
                        )
                with gr.Column():
                    with gr.Row():
                        top_p = gr.Slider(
                            label="Top-p (nucleus sampling)",
                            value=0.95,
                            minimum=0.0,
                            maximum=1,
                            step=0.05,
                            interactive=True,
                            info="Higher values sample fewer low-probability tokens",
                        )
                with gr.Column():
                    with gr.Row():
                        top_k = gr.Slider(
                            label="Top-k",
                            value=50,
                            minimum=0.0,
                            maximum=100,
                            step=1,
                            interactive=True,
                            info="Sample from a shortlist of top-k tokens",
                        )
                with gr.Column():
                    with gr.Row():
                        max_new_tokens = gr.Slider(
                            label="Maximum new tokens",
                            value=256,
                            minimum=0,
                            maximum=2048,
                            step=5,
                            interactive=True,
                            info="The maximum number of new tokens to generate",
                        )
                with gr.Row():
                    submit = gr.Button("Generate Answers")
    with gr.Row():
        with gr.Column():
            with gr.Box():
                gr.Markdown("**Falcon 7B instruct**")
                output_falcon = gr.Markdown()
        with gr.Column():
            with gr.Box():
                gr.Markdown("**LLaMA 7B instruct**")
                output_llama = gr.Markdown()
    with gr.Row():
        gr.Examples(
                    examples=examples,
                    inputs=[instruction],
                    cache_examples=False,
                    fn=process_example,
                    outputs=[output_falcon, output_llama],
                )
    submit.click(generate, inputs=[instruction, temperature, top_p, top_k, max_new_tokens], outputs=[output_falcon, output_llama ])
    instruction.submit(generate, inputs=[instruction, temperature, top_p, top_k, max_new_tokens ], outputs=[output_falcon, output_llama])

demo.queue(concurrency_count=16).launch(debug=True)