import ast from collections import defaultdict from functools import partial import itertools import os import re from concurrent.futures import ThreadPoolExecutor import numpy as np from datetime import datetime import gradio as gr import huggingface_hub import pandas as pd import plotly.graph_objects as go from huggingface_hub.file_download import repo_folder_name from huggingface_hub.hf_api import RepoFile from huggingface_hub.utils import EntryNotFoundError FALLBACK_TOKEN_NAME = "HF_TOKEN" def is_arary_like(x): return isinstance(x, list) or isinstance(x, tuple) or isinstance(x, np.ndarray) def get_task_type(df): if all(isinstance(pred, str) for pred in df['predictions'].iloc[0]): return "generative" if all(is_arary_like(pred) and all(isinstance(item, float) for item in pred) for pred in df['predictions'].iloc[0]): return "multiple_choice" return "mixed" def fix_df(df): # For some reason some metrics and predictions are stored as strings for col in ["predictions", "metrics", "choices", "gold", "gold_index"]: if col in df.columns: df[col] = [ast.literal_eval(x) if isinstance(x, str) else x for x in df[col].values] return df def get_run_name_seed(run_name): if "-seed-" not in run_name: return run_name, 5 run_name, seed = run_name.split("-seed-") return run_name, int(seed) def fetch_repo_structure(repo_name, oauth_token: gr.OAuthToken | None = None): token = os.environ.get(FALLBACK_TOKEN_NAME) if oauth_token: token = oauth_token.token files = list(huggingface_hub.list_repo_tree(repo_name, "details", recursive=False, token=token)) runs = {file.path.split('/')[-1] for file in files if isinstance(file, huggingface_hub.hf_api.RepoFolder)} if not runs: return {}, gr.update(choices=[], value=None) def process_run(run): run_files = list(huggingface_hub.list_repo_tree(repo_name, f"details/{run}", recursive=False, token=token)) return run, [file.path.split('/')[-1] for file in run_files if isinstance(file, huggingface_hub.hf_api.RepoFolder)] with ThreadPoolExecutor() as executor: results = list(executor.map(process_run, runs)) checkpoints_dict = dict(results) return checkpoints_dict, gr.update(choices=list(checkpoints_dict), value=None) def update_checkpoints(selected_runs, checkpoints): if not selected_runs: return gr.update(choices=[], value=None) common_checkpoints = set(checkpoints[selected_runs[0]]) for run in selected_runs[1:]: common_checkpoints.intersection_update(set(checkpoints[run])) common_checkpoints = sorted(list(common_checkpoints)) return gr.update(choices=common_checkpoints, value=common_checkpoints[0] if common_checkpoints else None) def select_runs_by_regex(runs, current_selected, regex_to_select): comp_re = re.compile(regex_to_select) return list(sorted(set((current_selected if current_selected else []) + [run for run in runs if comp_re.fullmatch(run)]))) def select_runs_by_language(runs, current_selected, language): if language: return select_runs_by_regex(runs, current_selected, f".*-{language}-.*") return current_selected def fetch_available_tasks(repo_name, runs_to_fetch, checkpoint) -> dict[str, dict[str, str]]: token = os.environ.get(FALLBACK_TOKEN_NAME) all_tasks = defaultdict(lambda: defaultdict(dict)) for run in runs_to_fetch: try: files = huggingface_hub.list_repo_tree(repo_name, f"details/{run}/{checkpoint}", token=token) parquet_files = [f.path.split('/')[-1] for f in files if f.path.endswith('.parquet')] for full_filename in parquet_files: task_name, date_str = full_filename.replace('.parquet', '').rsplit('_', 1) date = datetime.strptime(date_str, '%Y-%m-%dT%H-%M-%S.%f') if run not in all_tasks[task_name] or date > all_tasks[task_name][run]['date']: all_tasks[task_name][run] = {'filename': full_filename, 'date': date} except EntryNotFoundError: print(f"Checkpoint not found for run: {run}") available_tasks = { task: {run: info['filename'] for run, info in runs.items()} for task, runs in all_tasks.items() if set(runs.keys()) == set(runs_to_fetch) } return available_tasks def fetch_run_results(repo_name, runs_to_fetch, checkpoint, oauth_token: gr.OAuthToken | None = None, progress=gr.Progress()): task_runs_dict = fetch_available_tasks(repo_name, runs_to_fetch, checkpoint) task_names = list(task_runs_dict.keys()) return gr.update(choices=task_names, value=task_names[0] if task_names else None), task_runs_dict def render_table(df, selected_runs, metric_names): if df is None or not selected_runs or not metric_names: return None kept_metrics = [f"metric_{metric_name}_{run_name}" for run_name in selected_runs for metric_name in metric_names] other_metrics = [col for col in df.columns if col.startswith(f"metric_") and col not in kept_metrics] df = df.drop(columns=other_metrics) # widths = get_column_widths(df) df = shorten_column_names(df, selected_runs, metric_names) # Sample 100 df = df.sample(n=min(100, len(df)), random_state=42) return df def get_column_widths(df): column_widths = [] for col in df.columns: if col == "full_prompt": column_widths.append("300px") elif col in ["choices", "gold"]: column_widths.append("250px") elif col.startswith("metric_"): column_widths.append("50px") else: column_widths.append("200px") # Default width for other columns return column_widths def shorten_column_names(df, run_names: list[str], metric_names: list[str]): """ Turns metric columns (metric_{metric}_{run_name}) into {metric}_i Turns generation_{run_name} into generation_i """ # Handle metric columns # Aggregate columns to rename columns_to_rename = {} for idx, run_name in enumerate(run_names): for metric_name in metric_names: original_metric_column = f"metric_{metric_name}_{run_name}" if original_metric_column in df.columns: columns_to_rename[original_metric_column] = f"{metric_name}_{idx}" original_generation_column = f"generation_{run_name}" if original_generation_column in df.columns: columns_to_rename[original_generation_column] = f"generation_{idx}" # Rename columns in a single operation df = df.rename(columns=columns_to_rename) return df def load_task_data(repo_name, runs_to_fetch, checkpoint, task_name, tasks_files, progress=gr.Progress()): token = os.environ.get(FALLBACK_TOKEN_NAME) if not runs_to_fetch or not task_name: return None, None, None def fetch_run_file(run_to_fetch): file_path = f"details/{run_to_fetch}/{checkpoint}/{tasks_files[task_name][run_to_fetch]}" try: cached_path = huggingface_hub.hf_hub_download(repo_name, file_path, token=token) df = pd.read_parquet(cached_path) return df, run_to_fetch except EntryNotFoundError: print(f"File not found: {file_path}") return None, run_to_fetch with ThreadPoolExecutor() as pool: results = list(progress.tqdm(pool.map(fetch_run_file, runs_to_fetch), total=len(runs_to_fetch), desc="Fetching run data...")) dfs = [fix_df(df) for df, _ in results if df is not None] run_names = [run for _, run in results if run is not None] if not dfs: return None, None, gr.update(choices=[], value=None) task_type = get_task_type(dfs[0]) def prepare_df(df, run_name, task_type): def get_choice_predictions(df, task_type): # For some evals it's string for other it's list predictions = df['predictions'] if task_type == "generative": return predictions if task_type == "multiple_choice": n_choices = len(df['choices']) return [pred[0] for pred in predictions[:n_choices]] if task_type == "mixed": return predictions[0] return predictions generative_columns = { f"generation_{run_name}": df.apply(partial(get_choice_predictions, task_type=task_type), axis=1) } if task_type == "generative" or task_type == "mixed" else {} prepared_df = pd.DataFrame({ 'full_prompt': df['full_prompt'], **generative_columns, }) # For some reason some metrics are stored as strings metrics = df['metrics'] # Assume all metrics are the same for metric_key in metrics[0].keys(): prepared_df[f'metric_{metric_key}_{run_name}'] = [metric[metric_key] for metric in metrics] return prepared_df.set_index('full_prompt') def get_gold_label(df, task_type): if task_type == "generative": return df['gold'] return df['gold_index'] # Prepare the first DataFrame with choices and gold combined_df = dfs[0][['full_prompt']].set_index('full_prompt') if task_type in ["multiple_choice", "mixed"]: combined_df["choices"] = dfs[0]["choices"].values combined_df['gold'] = dfs[0].apply(lambda row: get_gold_label(row, task_type), axis=1).values # Join all prepared DataFrames for df, run_name in zip(dfs, run_names): prepared_df = prepare_df(df, run_name, task_type) combined_df = combined_df.join(prepared_df, how='outer', ) available_metrics = list(set("_".join(col.split('_')[1:-1]) for col in combined_df.columns if col.startswith("metric_"))) combined_df = combined_df.reset_index() chosen_metrics = available_metrics[:1] return combined_df, render_table(combined_df, runs_to_fetch, chosen_metrics), gr.update(choices=available_metrics, value=chosen_metrics) with gr.Blocks() as demo: runs_checkpoints = gr.State({}) results_df_full = gr.State(None) tasks_files = gr.State({}) login_button = gr.LoginButton(visible=False) repo = gr.Textbox(label="HF Repo", value="HuggingFaceFW-Dev/multiligual-ablation-logs-dev", visible=True) with gr.Column(): gr.Markdown("# FineWeb experiments results explorer") with gr.Row(): with gr.Column(): select_by_regex_text = gr.Textbox(label="Regex to select runs", value="ind_minhash(-CC-MAIN-|_)\\d{4}-\\d{2}-seed.*") select_by_regex_button = gr.Button("Select matching runs") with gr.Column(): select_by_language = gr.Dropdown(choices=["ar", "fr", "ru", "hi", "th", "tr", "zh", "sw", "te"], interactive=True, label="Select by language", info="Choose a language to prefill the regex") selected_runs = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Selected runs") checkpoint = gr.Dropdown(choices=[], interactive=True, label="Checkpoint") fetch_res = gr.Button("Fetch results") task_name = gr.Dropdown(choices=[], interactive=True, label="Task name") metric_names = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Metric") results_df = gr.Dataframe(interactive=False, wrap=True) # Run selection gr.on( triggers=[repo.change], fn=fetch_repo_structure, inputs=[repo], outputs=[runs_checkpoints, selected_runs], ) gr.on( triggers=[select_by_regex_button.click], fn=select_runs_by_regex, inputs=[runs_checkpoints, selected_runs, select_by_regex_text], outputs=[selected_runs] ) gr.on( triggers=[select_by_language.change], fn=select_runs_by_language, inputs=[runs_checkpoints, selected_runs, select_by_language], outputs=[selected_runs] ) # Update checkpoints based on selected runs gr.on( triggers=[selected_runs.change], fn=update_checkpoints, inputs=[selected_runs, runs_checkpoints], outputs=[checkpoint] ) # Fetch available tasks gr.on( triggers=[fetch_res.click], fn=fetch_run_results, inputs=[repo, selected_runs, checkpoint], outputs=[task_name, tasks_files] ) # Update results when task name or metric changes gr.on( triggers=[task_name.change], fn=load_task_data, inputs=[repo, selected_runs, checkpoint, task_name, tasks_files], outputs=[results_df_full, results_df, metric_names] ) gr.on( triggers=[metric_names.change], fn=render_table, inputs=[results_df_full, selected_runs, metric_names], outputs=[results_df] ) demo.load(fn=fetch_repo_structure, inputs=[repo], outputs=[runs_checkpoints, selected_runs]) demo.launch()