File size: 7,149 Bytes
75448af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from datetime import datetime
import tempfile
from typing import Callable
import gradio as gr
from functools import partial
import re
import json

from src.logic.data_fetching import fetch_datasets, fetch_graph_data, fetch_groups, fetch_metrics, update_datasets_with_regex
from src.logic.data_processing import export_data
from src.logic.graph_settings import update_graph_options
from src.logic.plotting import plot_data

def create_metric_view_tab(METRICS_LOCATION_DEFAULT: str, available_datasets: gr.State, selected_datasets: gr.State):
    metric_data = gr.State([])

    with gr.Row():
        with gr.Column(scale=2):
            with gr.Row():
                with gr.Column(scale=1):
                    base_folder = gr.Textbox(
                        label="Metrics Location",
                        value=METRICS_LOCATION_DEFAULT,
                    )
                    datasets_fetch = gr.Button("Fetch Datasets")

                with gr.Column(scale=1):
                    regex_select = gr.Text(label="Regex filter", value=".*")
                    regex_button = gr.Button("Search")
            with gr.Row():
                selected_datasets_dropdown = gr.Dropdown(
                    choices=[],
                    label="Datasets",
                    multiselect=True,
                    interactive=True,
                )

        with gr.Column(scale=1):
            grouping_dropdown = gr.Dropdown(
                choices=[],
                label="Grouping",
                multiselect=False,
            )
            metric_name_dropdown = gr.Dropdown(
                choices=[],
                label="Metric name",
                multiselect=False,
            )

            render_button = gr.Button("Render Metric", variant="primary")

    with gr.Tabs():
        with gr.TabItem("Graph Settings"):
            log_scale_x_checkbox = gr.Checkbox(
                label="Log scale x",
                value=False,
            )
            log_scale_y_checkbox = gr.Checkbox(
                label="Log scale y",
                value=False,
            )
            rounding = gr.Number(
                label="Rounding",
                value=2,
            )

        with gr.TabItem("Grouping Settings") as group_settings:
            with gr.Row() as group_choices:
                with gr.Column(scale=2):
                    group_regex = gr.Text(
                        label="Group Regex",
                        value=None,
                    )
                    with gr.Row():
                        top_select = gr.Number(
                            label="N Groups",
                            value=100,
                            interactive=True,
                        )

                        direction_checkbox = gr.Radio(
                            label="Partition",
                            choices=[
                                "Top",
                                "Bottom",
                                "Most frequent (n_docs)",
                            ],
                            value="Most frequent (n_docs)",
                        )

        with gr.TabItem("Histogram Settings") as histogram_settings:
            normalization_checkbox = gr.Checkbox(
                label="Normalize",
                value=True,
                visible=False
            )
            cdf_checkbox = gr.Checkbox(
                label="CDF",
                value=False,
            )
            perc_checkbox = gr.Checkbox(
                label="%",
                value=False,
            )

        with gr.TabItem("Summary Settings") as summary_settings:
            show_stds_checkbox = gr.Checkbox(
                label="Show standard deviations",
                value=False,
            )

    with gr.Row():
        graph_output = gr.Plot(label="Graph")
    with gr.Row(visible=False) as min_max_hist:
        with gr.Column(scale=3):
            min_max_hist_data = gr.Markdown()
        with gr.Column(scale=1):
            export_data_button = gr.Button("Export Data")
            export_data_json = gr.File(visible=False)
            


    def update_selected_datasets_dropdown(available_datasets, selected_datasets):
        return gr.Dropdown(choices=available_datasets, value=sorted(selected_datasets))


    datasets_fetch.click(
        fn=fetch_datasets,
        inputs=[base_folder],
        outputs=[available_datasets],
    )

    available_datasets.change(
        fn=update_selected_datasets_dropdown,
        inputs=[available_datasets, selected_datasets],
        outputs=selected_datasets_dropdown,
    )

    regex_button.click(
        fn=update_datasets_with_regex,
        inputs=[regex_select, selected_datasets, available_datasets],
        outputs=selected_datasets,
    )
    
    def update_selected_datasets(selected_datasets_dropdown):
        return selected_datasets_dropdown
    
    selected_datasets_dropdown.change(
        fn=update_selected_datasets,
        inputs=[selected_datasets_dropdown],
        outputs=selected_datasets,
    )
    
    selected_datasets.change(
        fn=update_selected_datasets_dropdown,
        inputs=[available_datasets, selected_datasets],
        outputs=selected_datasets_dropdown,
    )


    selected_datasets.change(
        fn=fetch_groups,
        inputs=[base_folder, selected_datasets, grouping_dropdown],
        outputs=grouping_dropdown,
    )

    grouping_dropdown.change(
        fn=fetch_metrics,
        inputs=[base_folder, selected_datasets, grouping_dropdown, metric_name_dropdown],
        outputs=metric_name_dropdown,
    )

    render_button.click(
        fn=fetch_graph_data,
        inputs=[
            base_folder,
            selected_datasets,
            metric_name_dropdown,
            grouping_dropdown,
        ],
        # We also output the graph_output = None to show the progress
        outputs=[metric_data, graph_output],
    )


    grouping_dropdown.change(
        fn=update_graph_options,
        inputs=[grouping_dropdown],
        outputs=[group_settings, histogram_settings, summary_settings],
    )


    gr.on(
        triggers=[normalization_checkbox.input, rounding.input, group_regex.input, direction_checkbox.input,
                  top_select.input, log_scale_x_checkbox.input,
                  log_scale_y_checkbox.input, cdf_checkbox.input, perc_checkbox.input, show_stds_checkbox.input, metric_data.change],
        fn=plot_data,
        inputs=[
            metric_data,
            metric_name_dropdown,
            normalization_checkbox,
            rounding,
            grouping_dropdown,
            top_select,
            direction_checkbox,
            group_regex,
            log_scale_x_checkbox,
            log_scale_y_checkbox,
            cdf_checkbox,
            perc_checkbox,
            show_stds_checkbox
        ],
        outputs=[graph_output, min_max_hist, min_max_hist_data],
    )

    export_data_button.click(
        fn=export_data,
        inputs=[metric_data, metric_name_dropdown, grouping_dropdown],
        outputs=[export_data_json],
    )
    
    return base_folder