Spaces:
Running
Running
File size: 4,662 Bytes
3542be4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import spaces
import gradio as gr
from gradio_imageslider import ImageSlider
import torch
torch.jit.script = lambda f: f
from diffusers import (
ControlNetModel,
StableDiffusionXLControlNetImg2ImgPipeline,
DDIMScheduler,
)
from controlnet_aux import AnylineDetector
from compel import Compel, ReturnedEmbeddingsType
from PIL import Image
import os
import time
import numpy as np
from utils.utils import load_cn_model, load_cn_config, load_tagger_model, resize_image_aspect_ratio, base_generation
from utils.prompt_analysis import PromptAnalysis
path = os.getcwd()
cn_dir = f"{path}/controlnet"
tagger_dir = f"{path}/tagger"
load_cn_model(cn_dir)
load_cn_config(cn_dir)
load_tagger_model(tagger_dir)
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
print(f"device: {device}")
print(f"dtype: {dtype}")
print(f"low memory: {LOW_MEMORY}")
model = "cagliostrolab/animagine-xl-3.1"
scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler")
controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=torch.float16, use_safetensors=True)
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
model,
controlnet=controlnet,
torch_dtype=dtype,
variant="fp16",
use_safetensors=True,
scheduler=scheduler,
)
compel = Compel(
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True],
)
pipe = pipe.to(device)
@spaces.GPU
def predict(
input_image,
prompt,
negative_prompt,
controlnet_conditioning_scale,
):
base_size =input_image.size
resize_image= resize_image_aspect_ratio(input_image)
resize_image_size = resize_image.size
width = resize_image_size[0]
height = resize_image_size[1]
white_base_pil = base_generation(resize_image.size, (255, 255, 255, 255)).convert("RGB")
conditioning, pooled = compel([prompt, negative_prompt])
generator = torch.manual_seed(0)
last_time = time.time()
output_image = pipe(
image=white_base_pil,
control_image=resize_image,
strength=1.0,
prompt_embeds=conditioning[0:1],
pooled_prompt_embeds=pooled[0:1],
negative_prompt_embeds=conditioning[1:2],
negative_pooled_prompt_embeds=pooled[1:2],
width=width,
height=height,
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
controlnet_start=0.0,
controlnet_end=1.0,
generator=generator,
num_inference_steps=30,
guidance_scale=8.5,
eta=1.0,
)
print(f"Time taken: {time.time() - last_time}")
output_image = output_image.resize(base_size, Image.LANCZOS)
return output_image
css = """
#intro{
# max-width: 32rem;
# text-align: center;
# margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Row() as block:
with gr.Column():
# 画像アップロード用の行
with gr.Row():
with gr.Column():
input_image = gr.Image(label="入力画像", type="pil")
# プロンプト入力用の行
with gr.Row():
prompt_analysis = PromptAnalysis(tagger_dir)
[prompt, nega] = PromptAnalysis.layout(input_image)
# 画像の詳細設定用のスライダー行
with gr.Row():
controlnet_conditioning_scale = gr.Slider(minimum=0.5, maximum=1.25, value=1.0, step=0.01, interactive=True, label="ラインアートの忠実度")
# 画像生成ボタンの行
with gr.Row():
generate_button = gr.Button("生成", interactive=False)
with gr.Column():
output_image = gr.Image(type="pil", label="Output Image")
# インプットとアウトプットの設定
inputs = [
input_image,
prompt,
nega,
controlnet_conditioning_scale,
]
outputs = [output_image]
# ボタンのクリックイベントを設定
generate_button.click(
fn=predict,
inputs=[input_image, prompt, nega, controlnet_conditioning_scale],
outputs=[output_image]
)
# デモの設定と起動
demo.queue(api_open=True)
demo.launch(show_api=True) |