File size: 6,654 Bytes
561c629
 
 
 
 
 
 
 
 
9bf54b1
561c629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bf54b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
561c629
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os, sys
import torch

# Import files from same folder
root_path = os.path.abspath('.')
sys.path.append(root_path)
from opt import opt
from architecture.rrdb import RRDBNet
from architecture.grl import GRL
from architecture.dat import DAT
from architecture.swinir import SwinIR
from architecture.cunet import UNet_Full


def load_rrdb(generator_weight_PATH, scale, print_options=False):  
    ''' A simpler API to load RRDB model from Real-ESRGAN
    Args:
        generator_weight_PATH (str): The path to the weight
        scale (int): the scaling factor
        print_options (bool): whether to print options to show what kinds of setting is used
    Returns:
        generator (torch): the generator instance of the model
    '''  

    # Load the checkpoint
    checkpoint_g = torch.load(generator_weight_PATH)

    # Find the generator weight
    if 'params_ema' in checkpoint_g:
        # For official ESRNET/ESRGAN weight
        weight = checkpoint_g['params_ema']
        generator = RRDBNet(3, 3, scale=scale)    # Default blocks num is 6     

    elif 'params' in checkpoint_g:
        # For official ESRNET/ESRGAN weight
        weight = checkpoint_g['params']
        generator = RRDBNet(3, 3, scale=scale)          

    elif 'model_state_dict' in checkpoint_g:
        # For my personal trained weight
        weight = checkpoint_g['model_state_dict']
        generator = RRDBNet(3, 3, scale=scale)          

    else:
        print("This weight is not supported")
        os._exit(0)


    # Handle torch.compile weight key rename
    old_keys = [key for key in weight]
    for old_key in old_keys:
        if old_key[:10] == "_orig_mod.":
            new_key = old_key[10:]
            weight[new_key] = weight[old_key]
            del weight[old_key]

    generator.load_state_dict(weight)
    generator = generator.eval().cuda()


    # Print options to show what kinds of setting is used
    if print_options:
        if 'opt' in checkpoint_g:
            for key in checkpoint_g['opt']:
                value = checkpoint_g['opt'][key]
                print(f'{key} : {value}')

    return generator


def load_cunet(generator_weight_PATH, scale, print_options=False):
    ''' A simpler API to load CUNET model from Real-CUGAN
    Args:
        generator_weight_PATH (str): The path to the weight
        scale (int): the scaling factor
        print_options (bool): whether to print options to show what kinds of setting is used
    Returns:
        generator (torch): the generator instance of the model
    '''  
    # This func is deprecated now
    
    if scale != 2:
        raise NotImplementedError("We only support 2x in CUNET")

    # Load the checkpoint
    checkpoint_g = torch.load(generator_weight_PATH)

    # Find the generator weight
    if 'model_state_dict' in checkpoint_g:
        # For my personal trained weight
        weight = checkpoint_g['model_state_dict']
        loss = checkpoint_g["lowest_generator_weight"]
        if "iteration" in checkpoint_g:
            iteration = checkpoint_g["iteration"]
        else:
            iteration = "NAN"
        generator = UNet_Full()          
        # generator = torch.compile(generator)# torch.compile
        print(f"the generator weight is {loss} at iteration {iteration}")

    else:
        print("This weight is not supported")
        os._exit(0)


    # Handle torch.compile weight key rename
    old_keys = [key for key in weight]
    for old_key in old_keys:
        if old_key[:10] == "_orig_mod.":
            new_key = old_key[10:]
            weight[new_key] = weight[old_key]
            del weight[old_key]

    generator.load_state_dict(weight)
    generator = generator.eval().cuda()


    # Print options to show what kinds of setting is used
    if print_options:
        if 'opt' in checkpoint_g:
            for key in checkpoint_g['opt']:
                value = checkpoint_g['opt'][key]
                print(f'{key} : {value}')

    return generator

def load_grl(generator_weight_PATH, scale=4):
    ''' A simpler API to load GRL model
    Args:
        generator_weight_PATH (str): The path to the weight
        scale (int):        Scale Factor (Usually Set as 4)
    Returns:
        generator (torch): the generator instance of the model
    '''

    # Load the checkpoint
    checkpoint_g = torch.load(generator_weight_PATH)

     # Find the generator weight
    if 'model_state_dict' in checkpoint_g:
        weight = checkpoint_g['model_state_dict']

        # GRL tiny model (Note: tiny2 version)
        generator = GRL(
            upscale = scale,
            img_size = 64,
            window_size = 8,
            depths = [4, 4, 4, 4],
            embed_dim = 64,
            num_heads_window = [2, 2, 2, 2],
            num_heads_stripe = [2, 2, 2, 2],
            mlp_ratio = 2,
            qkv_proj_type = "linear",
            anchor_proj_type = "avgpool",
            anchor_window_down_factor = 2,
            out_proj_type = "linear",
            conv_type = "1conv",
            upsampler = "nearest+conv",     # Change
        ).cuda()

    else:
        print("This weight is not supported")
        os._exit(0)


    generator.load_state_dict(weight)
    generator = generator.eval().cuda()


    num_params = 0
    for p in generator.parameters():
        if p.requires_grad:
            num_params += p.numel()
    print(f"Number of parameters {num_params / 10 ** 6: 0.2f}")


    return generator



def load_dat(generator_weight_PATH, scale=4):

    # Load the checkpoint
    checkpoint_g = torch.load(generator_weight_PATH)

     # Find the generator weight
    if 'model_state_dict' in checkpoint_g:
        weight = checkpoint_g['model_state_dict']

        # DAT small model in default
        generator = DAT(upscale = 4,
                        in_chans = 3,
                        img_size = 64,
                        img_range = 1.,
                        depth = [6, 6, 6, 6, 6, 6],
                        embed_dim = 180,
                        num_heads = [6, 6, 6, 6, 6, 6],
                        expansion_factor = 2,
                        resi_connection = '1conv',
                        split_size = [8, 16],
                        upsampler = 'pixelshuffledirect',
                        ).cuda()

    else:
        print("This weight is not supported")
        os._exit(0)


    generator.load_state_dict(weight)
    generator = generator.eval().cuda()


    num_params = 0
    for p in generator.parameters():
        if p.requires_grad:
            num_params += p.numel()
    print(f"Number of parameters {num_params / 10 ** 6: 0.2f}")


    return generator