HenryStephen
commited on
Commit
·
43515a8
1
Parent(s):
c831d35
Deploying RepoSnipy
Browse files- .gitattributes +1 -0
- .gitignore +163 -0
- LICENSE +21 -0
- README.md +96 -13
- app.py +442 -0
- assets/search.gif +3 -0
- data/SimilarityCal_model_NO1.pt +3 -0
- data/index.bin +3 -0
- data/index_test.bin +3 -0
- data/kmeans_model_scibert.pkl +3 -0
- data/pair_classifier.py +37 -0
- data/repo_clusters.json +0 -0
- data/repo_clusters_test.json +0 -0
- data/repo_doc.py +18 -0
- requirements.txt +12 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
161 |
+
|
162 |
+
# Streamlit configs
|
163 |
+
.streamlit/
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 RepoSnipy
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,13 +1,96 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# RepoSnipy 🐉
|
2 |
+
Neural search engine for discovering semantically similar Python repositories on GitHub.
|
3 |
+
|
4 |
+
## Demo
|
5 |
+
**TODO --- Update the gif file!!!**
|
6 |
+
|
7 |
+
Searching an indexed repository:
|
8 |
+
|
9 |
+
![Search Indexed Repo Demo](assets/search.gif)
|
10 |
+
|
11 |
+
## About
|
12 |
+
|
13 |
+
RepoSnipy is a neural search engine built with [streamlit](https://github.com/streamlit/streamlit) and [docarray](https://github.com/docarray/docarray). You can query a public Python repository hosted on GitHub and find popular repositories that are semantically similar to it.
|
14 |
+
|
15 |
+
Compared to the previous generation of [RepoSnipy](https://github.com/RepoAnalysis/RepoSnipy), the latest version has such new features below:
|
16 |
+
* It uses the [RepoSim4Py](https://github.com/RepoMining/RepoSim4Py), which is based on [RepoSim4Py pipeline](https://huggingface.co/Henry65/RepoSim4Py), to create multi-level embeddings for Python repositories.
|
17 |
+
* Multi-level embeddings --- code, docstring, readme, requirement, and repository.
|
18 |
+
* It uses the [SciBERT](https://arxiv.org/abs/1903.10676) model to analyse repository topics and to generate embeddings for topics.
|
19 |
+
* Transfer multiple topics into one cluster --- it uses a [KMeans](data/kmeans_model_scibert.pkl) model to analyse topic embeddings and to cluster repositories based on topics.
|
20 |
+
* **SimilarityCal --- TODO update!!!**
|
21 |
+
|
22 |
+
We have created a [vector dataset](data/index.bin) (stored as docarray index) of approximate 9700 GitHub Python repositories that has license and over 300 stars by the time of February 2024. The accordingly generated clusters were putted in a [json dataset](data/repo_clusters.json) (stored repo-cluster as key-values).
|
23 |
+
|
24 |
+
## Installation
|
25 |
+
|
26 |
+
### Prerequisites
|
27 |
+
* Python 3.11
|
28 |
+
* pip
|
29 |
+
|
30 |
+
### Installation with code
|
31 |
+
We recommend to install first a [conda](https://conda.io/projects/conda/en/latest/index.html) environment with `python 3.11`. Then, you can download the repository. See below:
|
32 |
+
```bash
|
33 |
+
conda create --name py311 python=3.11
|
34 |
+
conda activate py311
|
35 |
+
git clone https://github.com/RepoMining/RepoSnipy
|
36 |
+
```
|
37 |
+
After downloading the repository, you need install the required package. **Make sure the python and pip you used are both from conda environment!**
|
38 |
+
For the following:
|
39 |
+
```bash
|
40 |
+
cd RepoSnipy
|
41 |
+
pip install -r requirements.txt
|
42 |
+
```
|
43 |
+
|
44 |
+
### Usage
|
45 |
+
Then run the app on your local machine using:
|
46 |
+
```bash
|
47 |
+
streamlit run app.py
|
48 |
+
```
|
49 |
+
or
|
50 |
+
```bash
|
51 |
+
python -m streamlit run app.py
|
52 |
+
```
|
53 |
+
Importantly, to avoid unnecessary conflict (like version conflict, or package location conflict), you should ensure that **streamlit you used is from conda environment**!
|
54 |
+
|
55 |
+
### Dataset
|
56 |
+
As mentioned above, RepoSnipy needs [vector](data/index.bin), [json](data/repo_clusters.json) dataset and [KMeans](data/kmeans_model_scibert.pkl) model when you start up it. For your convenience, we have uploaded them in the folder [data](data) of this repository.
|
57 |
+
|
58 |
+
To provide research-oriented meaning, we have provided the following scripts for you to recreate them:
|
59 |
+
```bash
|
60 |
+
cd data
|
61 |
+
python create_index.py # For creating vector dataset (binary files)
|
62 |
+
python generate_cluster.py # For creating useful cluster model and information (KMeans model and json files representing repo-clusters)
|
63 |
+
```
|
64 |
+
|
65 |
+
More details can refer to these two scripts above. When you run scripts above, you will get the following files:
|
66 |
+
1. Generated by [create_index.py](data/create_index.py):
|
67 |
+
```bash
|
68 |
+
repositories.txt # the original repositories file
|
69 |
+
invalid_repositories.txt # the invalid repositories file, including invalid repositories
|
70 |
+
filtered_repositories.txt # the final repositories file, removing duplicated and invalid repositories
|
71 |
+
index{i}_{i * target_sub_length}.bin # the sub-index files, where i means number of sub-repositories and target_sub_length means sub-repositories length
|
72 |
+
index.bin # the index file merged by sub-index files and removed numpy zero arrays
|
73 |
+
```
|
74 |
+
2. Generated by [generate_cluster.py](data/generate_cluster.py):
|
75 |
+
```
|
76 |
+
repo_clusters.json # a json file representing repo-cluster dictionary
|
77 |
+
kmeans_model_scibert.pkl # a pickle file for storing kmeans model based on topic embeddings generated by scibert model
|
78 |
+
```
|
79 |
+
|
80 |
+
|
81 |
+
## Evaluation
|
82 |
+
**TODO ---- update!!!**
|
83 |
+
|
84 |
+
The [evaluation script](evaluate.py) finds all combinations of repository pairs in the dataset and calculates the cosine similarity between their embeddings. It also checks if they share at least one topic (except for `python` and `python3`). Then we compare them and use ROC AUC score to evaluate the embeddings performance. The resultant dataframe containing all pairs of cosine similarity and topics similarity can be downloaded from [here](https://huggingface.co/datasets/Lazyhope/RepoSnipy_eval/tree/main), including both code embeddings and docstring embeddings evaluations. The resultant ROC AUC score of code embeddings is around 0.84, and the docstring embeddings is around 0.81.
|
85 |
+
|
86 |
+
## License
|
87 |
+
|
88 |
+
Distributed under the MIT License. See [LICENSE](LICENSE) for more information.
|
89 |
+
|
90 |
+
## Acknowledgments
|
91 |
+
|
92 |
+
The model and the fine-tuning dataset used:
|
93 |
+
|
94 |
+
* [UniXCoder](https://arxiv.org/abs/2203.03850)
|
95 |
+
* [AdvTest](https://arxiv.org/abs/1909.09436)
|
96 |
+
* [SciBERT](https://arxiv.org/abs/1903.10676)
|
app.py
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import json
|
3 |
+
import nltk
|
4 |
+
import joblib
|
5 |
+
import torch
|
6 |
+
import pandas as pd
|
7 |
+
import numpy as np
|
8 |
+
import streamlit as st
|
9 |
+
from pathlib import Path
|
10 |
+
from torch import nn
|
11 |
+
from docarray import DocList
|
12 |
+
from docarray.index import InMemoryExactNNIndex
|
13 |
+
from transformers import pipeline
|
14 |
+
from transformers import AutoTokenizer, AutoModel
|
15 |
+
from data.repo_doc import RepoDoc
|
16 |
+
from data.pair_classifier import PairClassifier
|
17 |
+
from nltk.stem import WordNetLemmatizer
|
18 |
+
|
19 |
+
nltk.download("wordnet")
|
20 |
+
KMEANS_MODEL_PATH = Path(__file__).parent.joinpath("data/kmeans_model_scibert.pkl")
|
21 |
+
SIMILARITY_CAL_MODEL_PATH = Path(__file__).parent.joinpath("data/SimilarityCal_model_NO1.pt")
|
22 |
+
device = (
|
23 |
+
"cuda"
|
24 |
+
if torch.cuda.is_available()
|
25 |
+
else "mps"
|
26 |
+
if torch.backends.mps.is_available()
|
27 |
+
else "cpu"
|
28 |
+
)
|
29 |
+
|
30 |
+
# 1. Product environment
|
31 |
+
# INDEX_PATH = Path(__file__).parent.joinpath("data/index.bin")
|
32 |
+
# CLUSTER_PATH = Path(__file__).parent.joinpath("data/repo_clusters.json")
|
33 |
+
SCIBERT_MODEL_PATH = "allenai/scibert_scivocab_uncased"
|
34 |
+
|
35 |
+
|
36 |
+
# 2. Developing environment
|
37 |
+
INDEX_PATH = Path(__file__).parent.joinpath("data/index_test.bin")
|
38 |
+
CLUSTER_PATH = Path(__file__).parent.joinpath("data/repo_clusters_test.json")
|
39 |
+
# SCIBERT_MODEL_PATH = Path(__file__).parent.joinpath("data/scibert_scivocab_uncased") # Download locally
|
40 |
+
|
41 |
+
|
42 |
+
@st.cache_resource(show_spinner="Loading repositories basic information...")
|
43 |
+
def load_index():
|
44 |
+
"""
|
45 |
+
The function to load the index file and return a RepoDoc object with default value
|
46 |
+
:return: index and a RepoDoc object with default value
|
47 |
+
"""
|
48 |
+
default_doc = RepoDoc(
|
49 |
+
name="",
|
50 |
+
topics=[],
|
51 |
+
stars=0,
|
52 |
+
license="",
|
53 |
+
code_embedding=None,
|
54 |
+
doc_embedding=None,
|
55 |
+
readme_embedding=None,
|
56 |
+
requirement_embedding=None,
|
57 |
+
repository_embedding=None
|
58 |
+
)
|
59 |
+
|
60 |
+
return InMemoryExactNNIndex[RepoDoc](index_file_path=INDEX_PATH), default_doc
|
61 |
+
|
62 |
+
|
63 |
+
@st.cache_resource(show_spinner="Loading repositories clusters...")
|
64 |
+
def load_repo_clusters():
|
65 |
+
"""
|
66 |
+
The function to load the repo-clusters file
|
67 |
+
:return: a dictionary with the repo-clusters
|
68 |
+
"""
|
69 |
+
with open(CLUSTER_PATH, "r") as file:
|
70 |
+
repo_clusters = json.load(file)
|
71 |
+
|
72 |
+
return repo_clusters
|
73 |
+
|
74 |
+
|
75 |
+
@st.cache_resource(show_spinner="Loading RepoSim4Py pipeline model...")
|
76 |
+
def load_pipeline_model():
|
77 |
+
"""
|
78 |
+
The function to load RepoSim4Py pipeline model
|
79 |
+
:return: a HuggingFace pipeline
|
80 |
+
"""
|
81 |
+
# Option 1 --- Download model by HuggingFace username/model_name
|
82 |
+
model_path = "Henry65/RepoSim4Py"
|
83 |
+
|
84 |
+
# Option 2 --- Download model locally
|
85 |
+
# model_path = Path(__file__).parent.joinpath("data/RepoSim4Py")
|
86 |
+
|
87 |
+
return pipeline(
|
88 |
+
model=model_path,
|
89 |
+
trust_remote_code=True,
|
90 |
+
device_map="auto"
|
91 |
+
)
|
92 |
+
|
93 |
+
|
94 |
+
@st.cache_resource(show_spinner="Loading SciBERT model...")
|
95 |
+
def load_scibert_model():
|
96 |
+
"""
|
97 |
+
The function to load SciBERT model
|
98 |
+
:return: tokenizer and model
|
99 |
+
"""
|
100 |
+
tokenizer = AutoTokenizer.from_pretrained(SCIBERT_MODEL_PATH)
|
101 |
+
scibert_model = AutoModel.from_pretrained(SCIBERT_MODEL_PATH).to(device)
|
102 |
+
return tokenizer, scibert_model
|
103 |
+
|
104 |
+
|
105 |
+
@st.cache_resource(show_spinner="Loading KMeans model...")
|
106 |
+
def load_kmeans_model():
|
107 |
+
"""
|
108 |
+
The function to load KMeans model
|
109 |
+
:return: a KMeans model
|
110 |
+
"""
|
111 |
+
return joblib.load(KMEANS_MODEL_PATH)
|
112 |
+
|
113 |
+
|
114 |
+
@st.cache_resource(show_spinner="Loading SimilarityCal model...")
|
115 |
+
def load_similaritycal_model():
|
116 |
+
sim_cal_model = PairClassifier()
|
117 |
+
sim_cal_model.load_state_dict(torch.load(SIMILARITY_CAL_MODEL_PATH))
|
118 |
+
sim_cal_model = sim_cal_model.to(device)
|
119 |
+
sim_cal_model = sim_cal_model.eval()
|
120 |
+
return sim_cal_model
|
121 |
+
|
122 |
+
|
123 |
+
def generate_scibert_embedding(tokenizer, scibert_model, text):
|
124 |
+
"""
|
125 |
+
The function for generating SciBERT embeddings based on topic text
|
126 |
+
:param text: the topic text
|
127 |
+
:return: topic embeddings
|
128 |
+
"""
|
129 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
|
130 |
+
outputs = scibert_model(**inputs)
|
131 |
+
# Use mean pooling for sentence representation
|
132 |
+
embeddings = outputs.last_hidden_state.mean(dim=1).cpu().detach().numpy()
|
133 |
+
return embeddings
|
134 |
+
|
135 |
+
|
136 |
+
@st.cache_data(show_spinner=False)
|
137 |
+
def run_pipeline_model(_model, repo_name, github_token):
|
138 |
+
"""
|
139 |
+
The function to generate repo_info by using pipeline model
|
140 |
+
:param _model: pipeline
|
141 |
+
:param repo_name: the name of repository
|
142 |
+
:param github_token: GitHub token
|
143 |
+
:return: the information generated by the pipeline
|
144 |
+
"""
|
145 |
+
with st.spinner(
|
146 |
+
f"Downloading and extracting the {repo_name}, this may take a while..."
|
147 |
+
):
|
148 |
+
extracted_infos = _model.preprocess(repo_name, github_token=github_token)
|
149 |
+
|
150 |
+
if not extracted_infos:
|
151 |
+
return None
|
152 |
+
|
153 |
+
with st.spinner(f"Generating embeddings for {repo_name}..."):
|
154 |
+
repo_info = _model.forward(extracted_infos)[0]
|
155 |
+
|
156 |
+
return repo_info
|
157 |
+
|
158 |
+
|
159 |
+
def run_index_search(index, query, search_field, limit):
|
160 |
+
"""
|
161 |
+
The function to search at index file based on query and limit
|
162 |
+
:param index: the index
|
163 |
+
:param query: query
|
164 |
+
:param search_field: which field to search for
|
165 |
+
:param limit: page limit
|
166 |
+
:return: a dataframe with search results
|
167 |
+
"""
|
168 |
+
top_matches, scores = index.find(
|
169 |
+
query=query, search_field=search_field, limit=limit
|
170 |
+
)
|
171 |
+
|
172 |
+
search_results = top_matches.to_dataframe()
|
173 |
+
search_results["scores"] = scores
|
174 |
+
|
175 |
+
return search_results
|
176 |
+
|
177 |
+
|
178 |
+
def run_cluster_search(repo_clusters, repo_name_list):
|
179 |
+
"""
|
180 |
+
The function to search cluster number for such repositories.
|
181 |
+
:param repo_clusters: dictionary with repo-clusters
|
182 |
+
:param repo_name_list: list or array represent repository names
|
183 |
+
:return: cluster number list
|
184 |
+
"""
|
185 |
+
clusters = []
|
186 |
+
for repo_name in repo_name_list:
|
187 |
+
clusters.append(repo_clusters[repo_name])
|
188 |
+
return clusters
|
189 |
+
|
190 |
+
|
191 |
+
def run_similaritycal_search(index, repo_clusters, model, query_doc, query_cluster_number, limit, same_cluster=True):
|
192 |
+
"""
|
193 |
+
The function to run SimilarityCal model.
|
194 |
+
:param index: index file
|
195 |
+
:param repo_clusters: repo-clusters json file
|
196 |
+
:param model: SimilarityCal model
|
197 |
+
:param query_doc: query repo doc
|
198 |
+
:param query_cluster_number: query repo cluster number
|
199 |
+
:param limit: limit
|
200 |
+
:param same_cluster: whether searching for same cluster
|
201 |
+
:return: result dataframe
|
202 |
+
"""
|
203 |
+
docs = index._docs
|
204 |
+
input_embeddings_list = []
|
205 |
+
result_dl = DocList[RepoDoc]()
|
206 |
+
for doc in docs:
|
207 |
+
if same_cluster and query_cluster_number != repo_clusters[doc.name]:
|
208 |
+
continue
|
209 |
+
if doc.name != query_doc.name:
|
210 |
+
e1, e2 = (torch.Tensor(query_doc.repository_embedding),
|
211 |
+
torch.Tensor(doc.repository_embedding))
|
212 |
+
input_embeddings = torch.cat([e1, e2])
|
213 |
+
input_embeddings_list.append(input_embeddings)
|
214 |
+
result_dl.append(doc)
|
215 |
+
|
216 |
+
input_embeddings_list = torch.stack(input_embeddings_list).to(device)
|
217 |
+
softmax = nn.Softmax(dim=1).to(device)
|
218 |
+
model_output = model(input_embeddings_list)
|
219 |
+
similarity_scores = softmax(model_output)[:, 1].cpu().detach().numpy()
|
220 |
+
df = result_dl.to_dataframe()
|
221 |
+
df["scores"] = similarity_scores
|
222 |
+
return df.sort_values(by='scores', ascending=False).reset_index(drop=True).head(limit)
|
223 |
+
|
224 |
+
|
225 |
+
if __name__ == "__main__":
|
226 |
+
# Loading dataset and models
|
227 |
+
index, default_doc = load_index()
|
228 |
+
repo_clusters = load_repo_clusters()
|
229 |
+
pipeline_model = load_pipeline_model()
|
230 |
+
lemmatizer = WordNetLemmatizer()
|
231 |
+
tokenizer, scibert_model = load_scibert_model()
|
232 |
+
kmeans = load_kmeans_model()
|
233 |
+
sim_cal_model = load_similaritycal_model()
|
234 |
+
|
235 |
+
# Setting the sidebar
|
236 |
+
with st.sidebar:
|
237 |
+
st.text_input(
|
238 |
+
label="GitHub Token",
|
239 |
+
key="github_token",
|
240 |
+
type="password",
|
241 |
+
placeholder="Paste your GitHub token here",
|
242 |
+
help="Consider setting GitHub token to avoid hitting rate limits: https://docs.github.com/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token",
|
243 |
+
)
|
244 |
+
|
245 |
+
st.slider(
|
246 |
+
label="Search results limit",
|
247 |
+
min_value=1,
|
248 |
+
max_value=100,
|
249 |
+
value=10,
|
250 |
+
step=1,
|
251 |
+
key="search_results_limit",
|
252 |
+
help="Limit the number of search results",
|
253 |
+
)
|
254 |
+
|
255 |
+
st.multiselect(
|
256 |
+
label="Display columns",
|
257 |
+
options=["scores", "name", "topics", "cluster number", "stars", "license"],
|
258 |
+
default=["scores", "name", "topics", "cluster number", "stars", "license"],
|
259 |
+
help="Select columns to display in the search results",
|
260 |
+
key="display_columns",
|
261 |
+
)
|
262 |
+
|
263 |
+
# Setting the main content
|
264 |
+
st.title("RepoSnipy")
|
265 |
+
|
266 |
+
st.text_input(
|
267 |
+
"Enter a GitHub repository URL or owner/repository (case-sensitive):",
|
268 |
+
value="",
|
269 |
+
max_chars=200,
|
270 |
+
placeholder="numpy/numpy",
|
271 |
+
key="repo_input",
|
272 |
+
)
|
273 |
+
|
274 |
+
st.checkbox(
|
275 |
+
label="Add/Update this repository to the index",
|
276 |
+
value=False,
|
277 |
+
key="update_index",
|
278 |
+
help="Encode the latest version of this repository and add/update it to the index",
|
279 |
+
)
|
280 |
+
|
281 |
+
# Setting the search button
|
282 |
+
search = st.button("Search")
|
283 |
+
# The regular expression for repository
|
284 |
+
repo_regex = r"^((git@|http(s)?://)?(github\.com)(/|:))?(?P<owner>[\w.-]+)(/)(?P<repo>[\w.-]+?)(\.git)?(/)?$"
|
285 |
+
|
286 |
+
if search:
|
287 |
+
match_res = re.match(repo_regex, st.session_state.repo_input)
|
288 |
+
# 1. Repository can be matched
|
289 |
+
if match_res is not None:
|
290 |
+
repo_name = f"{match_res.group('owner')}/{match_res.group('repo')}"
|
291 |
+
records = index.filter({"name": {"$eq": repo_name}})
|
292 |
+
# 1) Building the query information
|
293 |
+
query_doc = default_doc.copy() if not records else records[0]
|
294 |
+
# 2) Recording the cluster number
|
295 |
+
cluster_number = -1 if not records else repo_clusters[repo_name]
|
296 |
+
|
297 |
+
# Importance 1 ---- situation need to update repository information and cluster number
|
298 |
+
if st.session_state.update_index or not records:
|
299 |
+
# 1) Updating repository information by using RepoSim4Py pipeline
|
300 |
+
repo_info = run_pipeline_model(pipeline_model, repo_name, st.session_state.github_token)
|
301 |
+
if repo_info is None:
|
302 |
+
st.error("Repository not found or invalid GitHub token!")
|
303 |
+
st.stop()
|
304 |
+
|
305 |
+
query_doc.name = repo_info["name"]
|
306 |
+
query_doc.topics = repo_info["topics"]
|
307 |
+
query_doc.stars = repo_info["stars"]
|
308 |
+
query_doc.license = repo_info["license"]
|
309 |
+
query_doc.code_embedding = None if np.all(repo_info["mean_code_embedding"] == 0) else repo_info[
|
310 |
+
"mean_code_embedding"].reshape(-1)
|
311 |
+
query_doc.doc_embedding = None if np.all(repo_info["mean_doc_embedding"] == 0) else repo_info[
|
312 |
+
"mean_doc_embedding"].reshape(-1)
|
313 |
+
query_doc.readme_embedding = None if np.all(repo_info["mean_readme_embedding"] == 0) else repo_info[
|
314 |
+
"mean_readme_embedding"].reshape(-1)
|
315 |
+
query_doc.requirement_embedding = None if np.all(repo_info["mean_requirement_embedding"] == 0) else \
|
316 |
+
repo_info["mean_requirement_embedding"].reshape(-1)
|
317 |
+
query_doc.repository_embedding = None if np.all(repo_info["mean_repo_embedding"] == 0) else repo_info[
|
318 |
+
"mean_repo_embedding"].reshape(-1)
|
319 |
+
|
320 |
+
# 2) Updating cluster number
|
321 |
+
topics_text = ' '.join(
|
322 |
+
[lemmatizer.lemmatize(topic.lower().replace('-', ' ')) for topic in query_doc.topics])
|
323 |
+
topic_embeddings = generate_scibert_embedding(tokenizer, scibert_model, topics_text)
|
324 |
+
cluster_number = int(kmeans.predict(topic_embeddings)[0])
|
325 |
+
|
326 |
+
# Importance 2 ---- update index file and repository clusters file
|
327 |
+
if st.session_state.update_index:
|
328 |
+
if not query_doc.license:
|
329 |
+
st.warning(
|
330 |
+
"License is missing in this repository and will not be persisted!"
|
331 |
+
)
|
332 |
+
elif (query_doc.code_embedding is None) and (query_doc.doc_embedding is None) and (
|
333 |
+
query_doc.requirement_embedding is None) and (query_doc.readme_embedding is None) and (
|
334 |
+
query_doc.repository_embedding is None):
|
335 |
+
st.warning(
|
336 |
+
"This repository has no such useful information (code, docstring, readme and requirement) extracted and will not be persisted!"
|
337 |
+
)
|
338 |
+
else:
|
339 |
+
index.index(query_doc)
|
340 |
+
repo_clusters[query_doc.name] = cluster_number
|
341 |
+
|
342 |
+
with st.spinner("Persisting the index and repository clusters..."):
|
343 |
+
index.persist(str(INDEX_PATH))
|
344 |
+
with open(CLUSTER_PATH, "w") as file:
|
345 |
+
json.dump(repo_clusters, file, indent=4)
|
346 |
+
st.success("Repository updated to the index!")
|
347 |
+
|
348 |
+
load_index.clear()
|
349 |
+
load_repo_clusters.clear()
|
350 |
+
|
351 |
+
st.session_state["query_doc"] = query_doc
|
352 |
+
st.session_state["cluster_number"] = cluster_number
|
353 |
+
|
354 |
+
# 2. Repository cannot be matched
|
355 |
+
else:
|
356 |
+
st.error("Invalid input!")
|
357 |
+
|
358 |
+
# Starting to query
|
359 |
+
if "query_doc" in st.session_state:
|
360 |
+
query_doc = st.session_state.query_doc
|
361 |
+
cluster_number = st.session_state.cluster_number
|
362 |
+
limit = st.session_state.search_results_limit
|
363 |
+
|
364 |
+
# Showing the query repository information
|
365 |
+
st.dataframe(
|
366 |
+
pd.DataFrame(
|
367 |
+
[
|
368 |
+
{
|
369 |
+
"name": query_doc.name,
|
370 |
+
"topics": query_doc.topics,
|
371 |
+
"cluster number": cluster_number,
|
372 |
+
"stars": query_doc.stars,
|
373 |
+
"license": query_doc.license,
|
374 |
+
}
|
375 |
+
],
|
376 |
+
)
|
377 |
+
)
|
378 |
+
|
379 |
+
display_columns = st.session_state.display_columns
|
380 |
+
code_sim_tab, doc_sim_tab, readme_sim_tab, requirement_sim_tab, repo_sim_tab, same_cluster_tab, diff_cluster_tab = st.tabs(
|
381 |
+
["Code_sim", "Docstring_sim", "Readme_sim", "Requirement_sim",
|
382 |
+
"Repository_sim", "Same_cluster", "Different_cluster"])
|
383 |
+
|
384 |
+
if query_doc.code_embedding is not None:
|
385 |
+
code_sim_res = run_index_search(index, query_doc, "code_embedding", limit)
|
386 |
+
cluster_numbers = run_cluster_search(repo_clusters, code_sim_res["name"])
|
387 |
+
code_sim_res["cluster number"] = cluster_numbers
|
388 |
+
code_sim_tab.dataframe(code_sim_res[display_columns])
|
389 |
+
else:
|
390 |
+
code_sim_tab.error("No function code was extracted for this repository!")
|
391 |
+
|
392 |
+
if query_doc.doc_embedding is not None:
|
393 |
+
doc_sim_res = run_index_search(index, query_doc, "doc_embedding", limit)
|
394 |
+
cluster_numbers = run_cluster_search(repo_clusters, doc_sim_res["name"])
|
395 |
+
doc_sim_res["cluster number"] = cluster_numbers
|
396 |
+
doc_sim_tab.dataframe(doc_sim_res[display_columns])
|
397 |
+
else:
|
398 |
+
doc_sim_tab.error("No function docstring was extracted for this repository!")
|
399 |
+
|
400 |
+
if query_doc.readme_embedding is not None:
|
401 |
+
readme_sim_res = run_index_search(index, query_doc, "readme_embedding", limit)
|
402 |
+
cluster_numbers = run_cluster_search(repo_clusters, readme_sim_res["name"])
|
403 |
+
readme_sim_res["cluster number"] = cluster_numbers
|
404 |
+
readme_sim_tab.dataframe(readme_sim_res[display_columns])
|
405 |
+
else:
|
406 |
+
readme_sim_tab.error("No readme file was extracted for this repository!")
|
407 |
+
|
408 |
+
if query_doc.requirement_embedding is not None:
|
409 |
+
requirement_sim_res = run_index_search(index, query_doc, "requirement_embedding", limit)
|
410 |
+
cluster_numbers = run_cluster_search(repo_clusters, requirement_sim_res["name"])
|
411 |
+
requirement_sim_res["cluster number"] = cluster_numbers
|
412 |
+
requirement_sim_tab.dataframe(requirement_sim_res[display_columns])
|
413 |
+
else:
|
414 |
+
requirement_sim_tab.error("No requirement file was extracted for this repository!")
|
415 |
+
|
416 |
+
if query_doc.repository_embedding is not None:
|
417 |
+
repo_sim_res = run_index_search(index, query_doc, "repository_embedding", limit)
|
418 |
+
cluster_numbers = run_cluster_search(repo_clusters, repo_sim_res["name"])
|
419 |
+
repo_sim_res["cluster number"] = cluster_numbers
|
420 |
+
repo_sim_tab.dataframe(repo_sim_res[display_columns])
|
421 |
+
else:
|
422 |
+
repo_sim_tab.error("No such useful information was extracted for this repository!")
|
423 |
+
|
424 |
+
if cluster_number is not None and query_doc.repository_embedding is not None:
|
425 |
+
same_cluster_df = run_similaritycal_search(index, repo_clusters, sim_cal_model,
|
426 |
+
query_doc, cluster_number, limit,
|
427 |
+
same_cluster=True)
|
428 |
+
diff_cluster_df = run_similaritycal_search(index, repo_clusters, sim_cal_model,
|
429 |
+
query_doc, cluster_number, limit,
|
430 |
+
same_cluster=False)
|
431 |
+
same_cluster_numbers = run_cluster_search(repo_clusters, same_cluster_df["name"])
|
432 |
+
same_cluster_df["cluster number"] = same_cluster_numbers
|
433 |
+
|
434 |
+
diff_cluster_numbers = run_cluster_search(repo_clusters, diff_cluster_df["name"])
|
435 |
+
diff_cluster_df["cluster number"] = diff_cluster_numbers
|
436 |
+
|
437 |
+
same_cluster_tab.dataframe(same_cluster_df[display_columns])
|
438 |
+
diff_cluster_tab.dataframe(diff_cluster_df[display_columns])
|
439 |
+
|
440 |
+
else:
|
441 |
+
same_cluster_tab.error("No such useful information was extracted for this repository!")
|
442 |
+
diff_cluster_tab.error("No such useful information was extracted for this repository!")
|
assets/search.gif
ADDED
Git LFS Details
|
data/SimilarityCal_model_NO1.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9146d0736261db38bb6fe6d4d6dd17797c01980be23b114af4b86a18589af632
|
3 |
+
size 102423158
|
data/index.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3837b4cb3f10cd0ff035201ef44ab655608b2877e5c89efc5cc63a69b666c415
|
3 |
+
size 226172318
|
data/index_test.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3837b4cb3f10cd0ff035201ef44ab655608b2877e5c89efc5cc63a69b666c415
|
3 |
+
size 226172318
|
data/kmeans_model_scibert.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b561ee3342b0b8646533e6b7ffd451234d76ce3695862fd17fad18787a3b47c
|
3 |
+
size 967215
|
data/pair_classifier.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class EmbeddingMLP(nn.Module):
|
6 |
+
def __init__(self, size=4):
|
7 |
+
super().__init__()
|
8 |
+
self.net = nn.Sequential(
|
9 |
+
nn.Linear(768 * size, 900 * size),
|
10 |
+
nn.BatchNorm1d(900 * size),
|
11 |
+
nn.ReLU(),
|
12 |
+
nn.Linear(900 * size, 300 * size)
|
13 |
+
)
|
14 |
+
|
15 |
+
def forward(self, data):
|
16 |
+
res = self.net(data)
|
17 |
+
return res
|
18 |
+
|
19 |
+
|
20 |
+
class PairClassifier(nn.Module):
|
21 |
+
def __init__(self, size=4):
|
22 |
+
super().__init__()
|
23 |
+
self.encoder = EmbeddingMLP(size)
|
24 |
+
self.net = nn.Sequential(
|
25 |
+
nn.Linear(300 * size * 2, 3000),
|
26 |
+
nn.ReLU(),
|
27 |
+
nn.Linear(3000, 1000),
|
28 |
+
nn.ReLU(),
|
29 |
+
nn.Linear(1000, 2),
|
30 |
+
)
|
31 |
+
|
32 |
+
def forward(self, data):
|
33 |
+
e1 = self.encoder(data[:, :768 * 4])
|
34 |
+
e2 = self.encoder(data[:, 768 * 4:])
|
35 |
+
twins = torch.cat([e1, e2], dim=1)
|
36 |
+
res = self.net(twins)
|
37 |
+
return res
|
data/repo_clusters.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/repo_clusters_test.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/repo_doc.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional
|
2 |
+
from docarray import BaseDoc
|
3 |
+
from docarray.typing import NdArray
|
4 |
+
|
5 |
+
|
6 |
+
class RepoDoc(BaseDoc):
|
7 |
+
"""
|
8 |
+
The class for representing basic data structures.
|
9 |
+
"""
|
10 |
+
name: str
|
11 |
+
topics: List[str]
|
12 |
+
stars: int
|
13 |
+
license: str
|
14 |
+
code_embedding: Optional[NdArray[768]]
|
15 |
+
doc_embedding: Optional[NdArray[768]]
|
16 |
+
readme_embedding: Optional[NdArray[768]]
|
17 |
+
requirement_embedding: Optional[NdArray[768]]
|
18 |
+
repository_embedding: Optional[NdArray[3072]]
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate
|
2 |
+
docarray
|
3 |
+
pandas
|
4 |
+
numpy
|
5 |
+
streamlit
|
6 |
+
torch
|
7 |
+
transformers
|
8 |
+
tqdm
|
9 |
+
scikit-learn
|
10 |
+
nltk
|
11 |
+
plotly
|
12 |
+
joblib
|