import gradio as gr import torch import numpy as np from transformers import AutoProcessor, AutoModel from PIL import Image import cv2 from concurrent.futures import ThreadPoolExecutor import os MODEL_NAME = "microsoft/xclip-base-patch16-zero-shot" CLIP_LEN = 32 # Check if GPU is available and set the device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print (device) # Load model and processor once and move them to the device processor = AutoProcessor.from_pretrained(MODEL_NAME) model = AutoModel.from_pretrained(MODEL_NAME).to(device) def get_video_length(file_path): cap = cv2.VideoCapture(file_path) length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) cap.release() return length def read_video_opencv(file_path, indices): frames = [] with ThreadPoolExecutor() as executor: futures = [executor.submit(get_frame, file_path, i) for i in indices] for future in futures: frame = future.result() if frame is not None: frames.append(frame) return frames def get_frame(file_path, index): cap = cv2.VideoCapture(file_path) cap.set(cv2.CAP_PROP_POS_FRAMES, index) ret, frame = cap.read() cap.release() if ret: return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) return None def sample_uniform_frame_indices(clip_len, seg_len): if seg_len < clip_len: repeat_factor = np.ceil(clip_len / seg_len).astype(int) indices = np.arange(seg_len).tolist() * repeat_factor indices = indices[:clip_len] else: spacing = seg_len // clip_len indices = [i * spacing for i in range(clip_len)] return np.array(indices).astype(np.int64) def concatenate_frames(frames, clip_len): layout = { 32: (4, 8) } rows, cols = layout[clip_len] combined_image = Image.new('RGB', (frames[0].shape[1]*cols, frames[0].shape[0]*rows)) frame_iter = iter(frames) y_offset = 0 for i in range(rows): x_offset = 0 for j in range(cols): img = Image.fromarray(next(frame_iter)) combined_image.paste(img, (x_offset, y_offset)) x_offset += frames[0].shape[1] y_offset += frames[0].shape[0] return combined_image def model_interface(uploaded_video, activity): video_length = get_video_length(uploaded_video) indices = sample_uniform_frame_indices(CLIP_LEN, seg_len=video_length) video = read_video_opencv(uploaded_video, indices) concatenated_image = concatenate_frames(video, CLIP_LEN) activities_list = [activity, "other"] inputs = processor( text=activities_list, videos=list(video), return_tensors="pt", padding=True, ) # Move the tensors to the same device as the model for key, value in inputs.items(): if isinstance(value, torch.Tensor): inputs[key] = value.to(device) with torch.no_grad(): outputs = model(**inputs) logits_per_video = outputs.logits_per_video probs = logits_per_video.softmax(dim=1) results_probs = [] results_logits = [] max_prob_index = torch.argmax(probs[0]).item() for i in range(len(activities_list)): current_activity = activities_list[i] prob = float(probs[0][i].cpu()) # Move tensor data to CPU for further processing logit = float(logits_per_video[0][i].cpu()) # Move tensor data to CPU for further processing results_probs.append((current_activity, f"Probability: {prob * 100:.2f}%")) results_logits.append((current_activity, f"Raw Score: {logit:.2f}")) likely_label = activities_list[max_prob_index] likely_probability = float(probs[0][max_prob_index].cpu()) * 100 # Move tensor data to CPU activity_perfomed = False if likely_label != 'other': activity_perfomed = True return activity_perfomed, concatenated_image, results_probs, results_logits, [likely_label, likely_probability] # Load video paths from the folder #video_folder = "Action Detection Samples" #video_files = [os.path.join(video_folder, file) for file in os.listdir(video_folder) if file.endswith('.mp4')] # considering only mp4 files # Create examples: assuming every video is about 'dancing' #examples = [[video, "taking a shot"] for video in video_files] iface = gr.Interface( fn=model_interface, inputs=[ gr.components.Video(label="Upload a video file"), gr.components.Text(default="taking a shot", label="Desired Activity to Recognize"), ], outputs=[ gr.components.Text(type="text", label="True/False"), gr.components.Image(type="pil", label="Sampled Frames"), gr.components.Text(type="text", label="Probabilities"), gr.components.Text(type="text", label="Raw Scores"), gr.components.Text(type="text", label="Top Prediction"), ], title="Action Detection Video", description="[Author: Ibrahim Hasani] This Method uses X-CLIP [Version: ZERO SHOT / SAMPLED FRAMES = 32] to determine if an action is being performed in a video or not. (Binaray Classifier). It contrasts an Action against multiple negative labels that are supposedly far enough in the latent semantic space vs the target label. Do not use negative labels in the desired activity, rather the action to be performed.", live=False, theme=gr.themes.Monochrome(), #examples=examples # Add examples to the interface ) iface.launch()