object_detect / gpu_app.py
Hamza011's picture
Rename app.py to gpu_app.py
1240596 verified
from huggingface_hub import hf_hub_download
from inference import YOLOv10
model_file = hf_hub_download(
repo_id="onnx-community/yolov10n", filename="onnx/model.onnx"
)
model = YOLOv10(model_file)
def detection(image, conf_threshold=0.3):
image = cv2.resize(image, (model.input_width, model.input_height))
new_image = model.detect_objects(image, conf_threshold)
return new_image
import gradio as gr
from gradio_webrtc import WebRTC
css = """.my-group {max-width: 600px !important; max-height: 600px !important;}
.my-column {display: flex !important; justify-content: center !important; align-items: center !important;}"""
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
<h1 style='text-align: center'>
YOLOv10 Webcam Stream (Powered by WebRTC ⚡️)
</h1>
"""
)
with gr.Column(elem_classes=["my-column"]):
with gr.Group(elem_classes=["my-group"]):
image = WebRTC(label="Stream", rtc_configuration=None)
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.30,
)
image.stream(
fn=detection, inputs=[image, conf_threshold], outputs=[image], time_limit=10
)
if __name__ == "__main__":
demo.launch()