Spaces:
Sleeping
Sleeping
Hammedalmodel
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,12 @@
|
|
|
|
|
|
1 |
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
-
import
|
5 |
-
import
|
|
|
|
|
6 |
|
7 |
# Initialize model and processor
|
8 |
ckpt = "unsloth/Llama-3.2-11B-Vision-Instruct"
|
@@ -12,52 +16,50 @@ model = MllamaForConditionalGeneration.from_pretrained(
|
|
12 |
).to("cuda")
|
13 |
processor = AutoProcessor.from_pretrained(ckpt)
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
# Convert image to RGB
|
18 |
-
image = Image.open(image).convert("RGB")
|
19 |
-
|
20 |
-
# Create message structure
|
21 |
-
messages = [
|
22 |
-
{
|
23 |
-
"role": "user",
|
24 |
-
"content": [
|
25 |
-
{"type": "text", "text": "Extract handwritten text from the image and output only the extracted text without any additional description or commentary in output"},
|
26 |
-
{"type": "image"}
|
27 |
-
]
|
28 |
-
}
|
29 |
-
]
|
30 |
-
|
31 |
-
# Process input
|
32 |
-
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
|
33 |
-
inputs = processor(text=texts, images=[image], return_tensors="pt").to("cuda")
|
34 |
-
|
35 |
-
|
36 |
-
# Generate output
|
37 |
-
outputs = model.generate(**inputs, max_new_tokens=250)
|
38 |
-
result = processor.decode(outputs[0], skip_special_tokens=True)
|
39 |
-
|
40 |
-
print(result)
|
41 |
-
|
42 |
-
# Clean up the output to remove the prompt and assistant text
|
43 |
-
if "assistant" in result.lower():
|
44 |
-
result = result[result.lower().find("assistant") + len("assistant"):].strip()
|
45 |
-
|
46 |
-
# Remove any remaining conversation markers
|
47 |
-
result = result.replace("user", "").replace("Extract handwritten text from the image and output only the extracted text without any additional description or commentary in output", "").strip()
|
48 |
-
|
49 |
-
print(result)
|
50 |
-
|
51 |
-
return result
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
4 |
from PIL import Image
|
5 |
import torch
|
6 |
+
import requests
|
7 |
+
from io import BytesIO
|
8 |
+
|
9 |
+
app = FastAPI()
|
10 |
|
11 |
# Initialize model and processor
|
12 |
ckpt = "unsloth/Llama-3.2-11B-Vision-Instruct"
|
|
|
16 |
).to("cuda")
|
17 |
processor = AutoProcessor.from_pretrained(ckpt)
|
18 |
|
19 |
+
class ImageRequest(BaseModel):
|
20 |
+
image_path: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
@app.post("/extract_text")
|
23 |
+
async def extract_text(request: ImageRequest):
|
24 |
+
try:
|
25 |
+
# Download image from URL
|
26 |
+
response = requests.get(request.image_path)
|
27 |
+
if response.status_code != 200:
|
28 |
+
raise HTTPException(status_code=400, detail="Failed to fetch image from URL")
|
29 |
+
|
30 |
+
# Open image from bytes
|
31 |
+
image = Image.open(BytesIO(response.content)).convert("RGB")
|
32 |
+
|
33 |
+
# Create message structure
|
34 |
+
messages = [
|
35 |
+
{
|
36 |
+
"role": "user",
|
37 |
+
"content": [
|
38 |
+
{"type": "text", "text": "Extract handwritten text from the image and output only the extracted text without any additional description or commentary in output"},
|
39 |
+
{"type": "image"}
|
40 |
+
]
|
41 |
+
}
|
42 |
+
]
|
43 |
+
|
44 |
+
# Process input
|
45 |
+
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
|
46 |
+
inputs = processor(text=texts, images=[image], return_tensors="pt").to("cuda")
|
47 |
+
|
48 |
+
# Generate output
|
49 |
+
outputs = model.generate(**inputs, max_new_tokens=250)
|
50 |
+
result = processor.decode(outputs[0], skip_special_tokens=True)
|
51 |
+
|
52 |
+
# Clean up the output
|
53 |
+
if "assistant" in result.lower():
|
54 |
+
result = result[result.lower().find("assistant") + len("assistant"):].strip()
|
55 |
+
|
56 |
+
result = result.replace("user", "").replace("Extract handwritten text from the image and output only the extracted text without any additional description or commentary in output", "").strip()
|
57 |
+
|
58 |
+
return {"text": f"\n{result}\n"}
|
59 |
+
|
60 |
+
except Exception as e:
|
61 |
+
raise HTTPException(status_code=500, detail=str(e))
|
62 |
|
63 |
+
if __name__ == "__main__":
|
64 |
+
import uvicorn
|
65 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|