import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter import os from langchain_google_genai import GoogleGenerativeAIEmbeddings import google.generativeai as genai from langchain_community.vectorstores import FAISS from langchain.chains.question_answering import load_qa_chain from langchain.prompts import PromptTemplate from dotenv import load_dotenv import traceback from langchain.embeddings import HuggingFaceEmbeddings import tensorflow as tf # Ensure TensorFlow is imported google_api_key = 'AIzaSyBPC1o6NSGFT2LumpdompngjOOzzUNwGqk' # Fetch from .env if not google_api_key: raise ValueError("Google API key not found. Please check your .env file.") genai.configure(api_key=google_api_key) # Function to extract text from PDFs def get_pdf_text(pdf_docs): text = "" try: for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() except Exception as e: st.error(f"Error reading PDF files: {e}") return text # Function to split text into manageable chunks def get_text_chunks(text): try: text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) chunks = text_splitter.split_text(text) except Exception as e: st.error(f"Error splitting text: {e}") return [] return chunks # Function to create an in-memory FAISS vector store def get_vector_store(text_chunks): try: # Initialize HuggingFace embeddings embedding_function = HuggingFaceEmbeddings(model_name="jinaai/jina-embeddings-v2-base-code") # Using FAISS to create vector store with the Hugging Face embeddings vector_store = FAISS.from_texts(text_chunks, embedding=embedding_function) return vector_store except Exception as e: st.error(f"Error creating vector store: {e}") traceback.print_exc() return None # Function to create a conversation chain with Google Generative AI def get_conversational_chain(): try: prompt_template = """ Answer the question as detailed as possible from the provided context. If the answer is not in the provided context, say, "Answer is not available in the context." Do not provide a wrong answer. Context: {context} Question: {question} Answer: """ model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) return chain except Exception as e: st.error(f"Error creating conversation chain: {e}") traceback.print_exc() return None # Function to process user input and provide a response def user_input(user_question, vector_store): try: docs = vector_store.similarity_search(user_question) chain = get_conversational_chain() if chain: response = chain( {"input_documents": docs, "question": user_question}, return_only_outputs=True ) st.markdown(f"
🤖 Response:: {response['output_text']}
", unsafe_allow_html=True) except Exception as e: st.error(f"Error processing user input: {e}") traceback.print_exc() # Main function to handle Streamlit UI and actions def main(): # Set page title and icon st.set_page_config(page_title="📚 Chat PDF with Gemini AI", layout="centered", page_icon="📖") # Add CSS for styling st.markdown( """ """, unsafe_allow_html=True ) # Add header st.markdown("

Chat with Your PDF using Gemini AI 🤖

", unsafe_allow_html=True) st.markdown("

Upload your PDF, ask questions, and get detailed AI responses!

", unsafe_allow_html=True) # Create a 2-column layout for better structure col1, col2 = st.columns([12, 2]) with col1: user_question = st.text_input("🔍 Ask a Question from the PDF Files", placeholder="Type your question here...") # Add a "Submit" button to process the question if st.button("Submit"): if user_question: st.write("### 🧠 Thinking...") # Only allow submission if vector_store is available if 'vector_store' in st.session_state: user_input(user_question, st.session_state.vector_store) else: st.error("Please upload and process a PDF file first.") else: st.warning("Please enter a question before submitting.") with col2: with st.sidebar: st.title("📂 PDF Upload & Processing") st.write("1. Upload multiple PDFs.") st.write("2. Ask questions based on the content.") pdf_docs = st.file_uploader("Upload PDF Files", accept_multiple_files=True, type=["pdf"]) if st.button("Submit & Process PDFs"): if pdf_docs: with st.spinner("📜 Extracting text and processing..."): raw_text = get_pdf_text(pdf_docs) if raw_text: text_chunks = get_text_chunks(raw_text) if text_chunks: vector_store = get_vector_store(text_chunks) if vector_store: # Store vector store in session state to avoid re-processing st.session_state.vector_store = vector_store st.success("✅ Processing complete!") else: st.warning("Please upload PDF files before processing.") if __name__ == "__main__": main()