Spaces:
Runtime error
Runtime error
import subprocess | |
import sys | |
import os | |
# Fonction pour installer un package si non présent | |
def install_package(package_name): | |
subprocess.run([sys.executable, "-m", "pip", "install", package_name], check=True) | |
# Vérifiez si torch est installé, sinon installez-le | |
try: | |
import torch | |
except ImportError: | |
print("Torch n'est pas installé. Installation de torch...") | |
install_package("torch") | |
import torch | |
# Vérifiez si transformers est installé, sinon installez-le | |
try: | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
) | |
except ImportError: | |
print("Transformers n'est pas installé. Installation de transformers...") | |
install_package("transformers") | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
) | |
# Installer flash-attn | |
subprocess.run( | |
"pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True, | |
) | |
import gradio as gr | |
from threading import Thread | |
# Obtenir le token d'authentification Hugging Face | |
token = os.getenv("HF_TOKEN") | |
if not token: | |
raise ValueError("Le token d'authentification HF_TOKEN n'est pas défini.") | |
# Charger le modèle et le tokenizer | |
model = AutoModelForCausalLM.from_pretrained( | |
"HaitameLaf/Phi3-Game16bit", | |
token=token, | |
trust_remote_code=True, | |
) | |
tok = AutoTokenizer.from_pretrained("HaitameLaf/Phi3-Game16bit", token=token) | |
terminators = [tok.eos_token_id] | |
# Vérifier la disponibilité du GPU | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
print(f"Using GPU: {torch.cuda.get_device_name(device)}") | |
else: | |
device = torch.device("cpu") | |
print("Using CPU") | |
model = model.to(device) | |
# Fonction de chat | |
def chat(message, history, temperature, do_sample, max_tokens): | |
chat = [{"role": "user", "content": item[0]} for item in history] | |
chat.extend({"role": "assistant", "content": item[1]} for item in history if item[1]) | |
chat.append({"role": "user", "content": message}) | |
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) | |
model_inputs = tok([messages], return_tensors="pt").to(device) | |
streamer = TextIteratorStreamer(tok, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = { | |
"input_ids": model_inputs.input_ids, | |
"streamer": streamer, | |
"max_new_tokens": max_tokens, | |
"do_sample": do_sample, | |
"temperature": temperature, | |
"eos_token_id": terminators, | |
} | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_text = "" | |
for new_text in streamer: | |
partial_text += new_text | |
yield partial_text | |
yield partial_text | |
# Configuration de Gradio | |
demo = gr.ChatInterface( | |
fn=chat, | |
examples=[["Write me a poem about Machine Learning."]], | |
additional_inputs_accordion=gr.Accordion( | |
label="⚙️ Parameters", open=False, render=False | |
), | |
additional_inputs=[ | |
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature"), | |
gr.Checkbox(label="Sampling", value=True), | |
gr.Slider(minimum=128, maximum=4096, step=1, value=512, label="Max new tokens"), | |
], | |
stop_btn="Stop Generation", | |
title="Chat With LLMs", | |
description="Now Running [HaitameLaf/Phi3-Game16bit](https://huggingface.co/HaitameLaf/Phi3-Game16bit)", | |
) | |
if __name__ == "__main__": | |
demo.launch() | |