|
import os |
|
from argparse import ArgumentParser |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
from tqdm import trange |
|
|
|
from FeatureDiversityLoss import FeatureDiversityLoss |
|
from architectures.model_mapping import get_model |
|
from configs.architecture_params import architecture_params |
|
from configs.dataset_params import dataset_constants |
|
from evaluation.qsenn_metrics import eval_model_on_all_qsenn_metrics |
|
from finetuning.map_function import finetune |
|
from get_data import get_data |
|
from saving.logging import Tee |
|
from saving.utils import json_save |
|
from train import train, test |
|
from training.optim import get_optimizer, get_scheduler_for_model |
|
|
|
|
|
def main(dataset, arch,seed=None, model_type="qsenn", do_dense=True,crop = True, n_features = 50, n_per_class=5, img_size=448, reduced_strides=False): |
|
|
|
if seed is None: |
|
seed = np.random.randint(0, 1000000) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
dataset_key = dataset |
|
if crop: |
|
assert dataset in ["CUB2011","TravelingBirds"] |
|
dataset_key += "_crop" |
|
log_dir = Path.home()/f"tmp/{arch}/{dataset_key}/{seed}/" |
|
log_dir.mkdir(parents=True, exist_ok=True) |
|
tee = Tee(log_dir / "log.txt") |
|
n_classes = dataset_constants[dataset]["num_classes"] |
|
train_loader, test_loader = get_data(dataset, crop=crop, img_size=img_size) |
|
model = get_model(arch, n_classes, reduced_strides) |
|
fdl = FeatureDiversityLoss(architecture_params[arch]["beta"], model.linear) |
|
OptimizationSchedule = get_scheduler_for_model(model_type, dataset) |
|
optimizer, schedule, dense_epochs =get_optimizer(model, OptimizationSchedule) |
|
if not os.path.exists(log_dir / "Trained_DenseModel.pth"): |
|
if do_dense: |
|
for epoch in trange(dense_epochs): |
|
model = train(model, train_loader, optimizer, fdl, epoch) |
|
schedule.step() |
|
if epoch % 5 == 0: |
|
test(model, test_loader,epoch) |
|
else: |
|
print("Using pretrained model, only makes sense for ImageNet") |
|
torch.save(model.state_dict(), os.path.join(log_dir, f"Trained_DenseModel.pth")) |
|
else: |
|
model.load_state_dict(torch.load(log_dir / "Trained_DenseModel.pth")) |
|
if not os.path.exists( log_dir/f"Results_DenseModel.json"): |
|
metrics_dense = eval_model_on_all_qsenn_metrics(model, test_loader, train_loader) |
|
json_save(os.path.join(log_dir, f"Results_DenseModel.json"), metrics_dense) |
|
final_model = finetune(model_type, model, train_loader, test_loader, log_dir, n_classes, seed, architecture_params[arch]["beta"], OptimizationSchedule, n_per_class, n_features) |
|
torch.save(final_model.state_dict(), os.path.join(log_dir,f"{model_type}_{n_features}_{n_per_class}_FinetunedModel.pth")) |
|
metrics_finetuned = eval_model_on_all_qsenn_metrics(final_model, test_loader, train_loader) |
|
json_save(os.path.join(log_dir, f"Results_{model_type}_{n_features}_{n_per_class}_FinetunedModel.json"), metrics_finetuned) |
|
print("Done") |
|
pass |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
parser = ArgumentParser() |
|
parser.add_argument('--dataset', default="CUB2011", type=str, help='dataset name', choices=["CUB2011", "ImageNet", "TravelingBirds", "StanfordCars"]) |
|
parser.add_argument('--arch', default="resnet50", type=str, help='Backbone Feature Extractor', choices=["resnet50", "resnet18"]) |
|
parser.add_argument('--model_type', default="qsenn", type=str, help='Type of Model', choices=["qsenn", "sldd"]) |
|
parser.add_argument('--seed', default=None, type=int, help='seed, used for naming the folder and random processes. Could be useful to set to have multiple finetune runs (e.g. Q-SENN and SLDD) on the same dense model') |
|
parser.add_argument('--do_dense', default=True, type=bool, help='whether to train dense model. Should be true for all datasets except (maybe) ImageNet') |
|
parser.add_argument('--cropGT', default=False, type=bool, |
|
help='Whether to crop CUB/TravelingBirds based on GT Boundaries') |
|
parser.add_argument('--n_features', default=50, type=int, help='How many features to select') |
|
parser.add_argument('--n_per_class', default=5, type=int, help='How many features to assign to each class') |
|
parser.add_argument('--img_size', default=448, type=int, help='Image size') |
|
parser.add_argument('--reduced_strides', default=False, type=bool, help='Whether to use reduced strides for resnets') |
|
args = parser.parse_args() |
|
main(args.dataset, args.arch, args.seed, args.model_type, args.do_dense,args.cropGT, args.n_features, args.n_per_class, args.img_size, args.reduced_strides) |
|
|