File size: 13,918 Bytes
dc96f30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ace228
dc96f30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
977ee66
dc96f30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import gradio as gr
from load_model import extract_sel_mean_std_bias_assignemnt
from pathlib import Path
from architectures.model_mapping import get_model
from configs.dataset_params import dataset_constants
import torch
import torchvision.transforms as transforms
import pandas as pd
import cv2
import numpy as np
from PIL import Image
from get_data import get_augmentation
from configs.dataset_params import normalize_params
import random
from evaluation.diversity import MultiKCrossChannelMaxPooledSum

def overlapping_features_on_input(model,output, feature_maps, input, target):
    W=model.linear.layer.weight
    feature_maps=feature_maps.detach().cpu().numpy().squeeze()
    print("feature_maps",feature_maps.shape)

    if target !=None:
     label=target-1
    else:
     output=output.detach().cpu().numpy()
     label=np.argmax(output)

    Interpretable_Selection= W[label,:]
    print("W",Interpretable_Selection)
    input_np=np.array(input)
    h,w= input.shape[:2]
    print("h,w:",h,w)
    Interpretable_Features=[]
    
    input_np=cv2.resize(input_np,(448,448))
    Feature_image_list=[input_np]

    color_id=0 #set each feature to singel color
    COLOR=['R','G','B','Y','P','C']


    for S in range(len(Interpretable_Selection)):
        if Interpretable_Selection[S] != 0:
               Interpretable_Features.append(feature_maps[S])
               Feature_image=cv2.resize(feature_maps[S],(448,448))
               Feature_image=np.uint((Feature_image-np.min(Feature_image))/(np.max(Feature_image)-np.min(Feature_image)) * 255)
               Feature_image=Feature_image.astype(np.uint8)


               #set each feature to singel color

               if color_id>len(COLOR)-1:
                   color_id=color_id%len(COLOR)

               color=COLOR[color_id]
               if color == 'R':
                    Feature_image_color=np.zeros_like(input_np)
                    Feature_image_color[:,:,0]=Feature_image
                    Feature_image=Feature_image_color
               if color == 'G':
                    Feature_image_color=np.zeros_like(input_np)
                    Feature_image_color[:,:,1]=Feature_image
                    Feature_image=Feature_image_color
               if color == 'B':
                    Feature_image_color=np.zeros_like(input_np)
                    Feature_image_color[:,:,2]=Feature_image
                    Feature_image=Feature_image_color
               if color == 'Y':
                    Feature_image_color=np.zeros_like(input_np)
                    Feature_image_color[:,:,0]=Feature_image
                    Feature_image_color[:,:,1]=Feature_image
                    Feature_image=Feature_image_color
               if color == 'P':
                    Feature_image_color=np.zeros_like(input_np)
                    Feature_image_color[:,:,0]=Feature_image
                    Feature_image_color[:,:,2]=Feature_image
                    Feature_image=Feature_image_color
               if color == 'C':
                    Feature_image_color=np.zeros_like(input_np)
                    Feature_image_color[:,:,1]=Feature_image
                    Feature_image_color[:,:,2]=Feature_image
                    Feature_image=Feature_image_color

               color_id+=1



               # use Gamma correction
               Feature_image=np.power(Feature_image,1.3)
               # use Gamma correction

               #set each feature to singel color

            #    Feature_image=cv2.applyColorMap(Feature_image,cv2.COLORMAP_JET)
               input_np=cv2.cvtColor(input_np, cv2.COLOR_BGR2GRAY)
               input_np=cv2.cvtColor(input_np,cv2.COLOR_GRAY2BGR)


               Feature_image=0.2*Feature_image+0.8*input_np




               Feature_image=np.uint((Feature_image-np.min(Feature_image))/(np.max(Feature_image)-np.min(Feature_image)) * 255)
               Feature_image=Feature_image.astype(np.uint8)
            #    path_to_featureimage=f"/home/qixuan/tmp/FeatureImage/FI{S}.jpg"
            #    cv2.imwrite(path_to_featureimage,Feature_image)
               Feature_image = cv2.cvtColor(Feature_image, cv2.COLOR_RGB2BGR)
               Feature_image_list.append(Feature_image)

    print("len of Features:",len(Interpretable_Features))

    return Feature_image_list


def genreate_intepriable_output(input,dataset="CUB2011", arch="resnet50",seed=123456, model_type="qsenn", n_features = 50, n_per_class=5, img_size=448, reduced_strides=False, folder = None, with_featuremaps=True):
    n_classes = dataset_constants[dataset]["num_classes"]

    # image_re=np.array(input)

    input=Image.fromarray(input)
    print("input shape",input.size)
  
    model = get_model(arch, n_classes, reduced_strides)
    tr=transform_input_img(input,img_size)
    # tr=transforms.Compose([
    #         transforms.Resize(500),
    #         transforms.CenterCrop(img_size),
    #         transforms.ToTensor(),
    #     ])

    #TR=get_augmentation(0.1, img_size, False, False, True, True, normalize_params["CUB2011"])
    device = torch.device("cpu")
    if folder is None:
        folder = Path(f"tmp/{arch}/{dataset}/{seed}/")
    model.load_state_dict(torch.load(folder / "Trained_DenseModel.pth",map_location=torch.device('cpu')))
    state_dict = torch.load(folder / f"{model_type}_{n_features}_{n_per_class}_FinetunedModel.pth",map_location=torch.device('cpu'))
    selection= torch.load(folder / f"SlDD_Selection_50.pt",map_location=torch.device('cpu'))
    state_dict['linear.selection']=selection
    
    feature_sel, sparse_layer, current_mean, current_std, bias_sparse = extract_sel_mean_std_bias_assignemnt(state_dict)
    model.set_model_sldd(feature_sel, sparse_layer, current_mean, current_std, bias_sparse)
    model.load_state_dict(state_dict)

    input = tr(input)

    # path_to_input="/home/qixuan/tmp/FeatureImage/croped.jpg"
    # path_to_input_re="/home/qixuan/tmp/FeatureImage/re.jpg"
    # path_to_input_concat="/home/qixuan/tmp/FeatureImage/concate.jpg"
    # image_re=cv2.cvtColor(image_re, cv2.COLOR_RGB2BGR)

    # image_re=cv2.resize(image_re,(448,448))

    # image_np = (input * 255).clamp(0, 255).byte()
    # image_np = image_np.permute(1, 2, 0).numpy() 
    # image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
    # print("????",input.shape)
    # concat=np.vstack((image_re, image_np))
    # cv2.imwrite(path_to_input,image_np)
    # cv2.imwrite(path_to_input_re,image_re)
    # cv2.imwrite(path_to_input_concat,concat)

    input= input.unsqueeze(0)
    input= input.to(device)
    model = model.to(device)
    model.eval()
    
    with torch.no_grad():
        output, feature_maps, final_features = model(input, with_feature_maps=True, with_final_features=True)
        print("featuresmap size:",feature_maps.size())
        output_np=output.detach().cpu().numpy()
        output_np= np.argmax(output_np)+1
    
    if with_featuremaps:
        return output_np,model,feature_maps
    else:
        return output_np, model  

def get_options_from_trainingset(output, model, TR, device,with_other_class):       
    print("outputclass:",output)


    #mode 2
    if with_other_class:
        other_targets=random.sample([i for i in range(1,200)if i != output],3)
        all_targets=[output]+other_targets
    else:
        all_targets=[output]

    
    #shuffled_options = options.sample(frac=1).reset_index(drop=True)

    op=[]
    # resample_img_id_list=[]#resample filter
    W=model.linear.layer.weight# intergrate negative features
    model.eval()
    with torch.no_grad():
        for t in all_targets:


            # intergrate negative features
            W_class=W[t-1,:]
            features_id=[ f for f in W_class if f !=0 ]
            features_id_neg= [i+1 for i, x in enumerate(features_id) if x < 0]
            print(f"{t}",features_id_neg) 

            # intergrate negative features
            
            image = cv2.imread(f"options/{t}.jpg") 
            concatenate_class = np.array(image)
            concatenate_class = cv2.cvtColor(concatenate_class, cv2.COLOR_RGB2BGR)

            op.append((concatenate_class,features_id_neg))# intergrate negative features
    return op

def transform_input_img(input,img_size):
    h,w=input.size
    rate=h/w
    if h >= w:
        w_new=img_size
        h_new=int(w_new*rate)

    else:
        h_new=img_size
        w_new=int(h_new/rate)

    return transforms.Compose([
            transforms.Resize((w_new,h_new)),
            transforms.CenterCrop(img_size),
            transforms.ToTensor(),
        ])




def post_next_image(OPT: str,key:str):
    if OPT==key:
        return ("Congradulations! you can simulate the prediction of Model this time",gr.update(interactive=False),gr.update(interactive=False),gr.update(interactive=False),gr.update(interactive=False))
    else:
        return (f"sorry, what the model predicted is {key}",gr.update(interactive=False),gr.update(interactive=False),gr.update(interactive=False),gr.update(interactive=False))



def get_features_on_interface(input):
    img_size=448
    output,model=genreate_intepriable_output(input,dataset="CUB2011", 
                                arch="resnet50",seed=123456, 
                                model_type="qsenn", n_features = 50,n_per_class=5,
                                img_size=448, reduced_strides=False, folder = None,with_featuremaps=False)
    TR=get_augmentation(0.1, img_size, False, False, True, True, normalize_params["CUB2011"])
    device = torch.device("cpu")
    op= get_options_from_trainingset(output, model, TR, device,with_other_class=True)
    key=op[0][0]# intergrate negative features
    key_neg=op[0][1]
    one=op[1][0]
    one_neg=op[1][1]
    print("one_neg",op[1][1])
    two=op[2][0]
    two_neg=op[2][1]
    print("two_neg",op[2][1])
    three=op[3][0]
    three_neg=op[3][1]
    print("three_neg",op[3][1])
    mark=[]
    print("Before shuffle:", op[1][1],op[2][1],op[3][1])
    random.shuffle(op)
    print("After shuffle:", op[1][1],op[2][1],op[3][1])
    option=[(op[0][0],"A"),
            (op[1][0],"B"),
            (op[2][0],"C"),
            (op[3][0],"D")]
    for value,char in option:
        if np.array_equal(value,key):
            key_op=char
            print("key",key_op)
            print("key_neg",key_neg)
            if key_neg !=[]:
                mark.append(f" for {key_op}: features {', '.join(map(str, key_neg))} are negative")

        if np.array_equal(value,one):
            one_op=char
            if one_neg !=[]:
                print("one",one_op)
                print("one_neg",op[1][1])
                mark.append(f" for {one_op}: features {', '.join(map(str, one_neg))} are negative")
        if np.array_equal(value,two):
            two_op=char
            if two_neg !=[]:
                print("two",two_op)
                print("two_neg",op[2][1])
                mark.append(f" for {two_op}: features {', '.join(map(str, two_neg))} are negative")
        if np.array_equal(value,three):
            three_op=char
            if three_neg !=[]:
                print("three",three_op)
                print("three_neg",op[3][1])
                mark.append(f" for {three_op}: features {', '.join(map(str, three_neg))} are negative")

    mark_result=','.join(mark)
        
    return option, key_op,f" These are some class explanations from our model for different classes,which of these classes has our model predicted?({mark_result}) ",gr.update(interactive=False)

def direct_inference(input):
    img_size=448
    output, model,feature_maps=genreate_intepriable_output(input,dataset="CUB2011", 
                                arch="resnet50",seed=123456, 
                                model_type="qsenn", n_features = 50,n_per_class=5,
                                img_size=448, reduced_strides=False, folder = None,with_featuremaps=True)
    # image_list=overlapping_features_on_input(model,output,feature_maps,input,target=None)
    # image_arrays = [np.array(img) for img in image_list]
    # concatenated_image = np.concatenate(image_arrays, axis=0)
    TR=get_augmentation(0.1, img_size, False, False, True, True, normalize_params["CUB2011"])
    device = torch.device("cpu")
    concatenated_image=get_options_from_trainingset(output, model, TR, device, with_other_class=False)


    #original
    Input=Image.fromarray(input)
    tr=transform_input_img(Input,img_size)
    Input=tr(Input)
    image_np = (Input * 255).clamp(0, 255).byte()
    image_np = image_np.permute(1, 2, 0).numpy() 
    # image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)

    
    ORI= overlapping_features_on_input(model,output, feature_maps, image_np,output)#input  image_np
    ORI_arrays = [np.array(img) for img in ORI]
    concatenated_ORI = np.concatenate(ORI_arrays, axis=0)

    print(concatenated_ORI.shape,concatenated_image[0][0].shape)
    concatenated_image_final_array=np.concatenate((concatenated_ORI,concatenated_image[0][0]),axis=1)
    print(concatenated_image_final_array.shape)
    
    #original

    data_dir=Path("tmp/Datasets/CUB200/CUB_200_2011/")
    classlist=pd.read_csv(data_dir/"classes.txt",sep=' ',names=['cl_id','class_name'])
    output_name=classlist.loc[classlist['cl_id']==output,'class_name'].values[0]
    if concatenated_image[0][1]!=[]:
        output_name_and_features=f"{output_name}, features{', '.join(map(str, concatenated_image[0][1]))} are negative."
    else:
        output_name_and_features=f"{output_name}, all features are positive."


    return concatenated_image_final_array, output_name_and_features

def filter_with_diversity(featuremaps,output,weight):
    localizer = MultiKCrossChannelMaxPooledSum(range(1, 6), weight, None)
    localizer(output.to("cpu"),featuremaps.to("cpu"))

    locality, exlusive_locality = localizer.get_result()
    diversity = locality[4]
    diversity=diversity.item()
    return diversity