File size: 13,522 Bytes
dc96f30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import gradio as gr
from load_model import extract_sel_mean_std_bias_assignemnt
from pathlib import Path
from architectures.model_mapping import get_model
from configs.dataset_params import dataset_constants
import torch
import torchvision.transforms as transforms
import pandas as pd
import cv2
import numpy as np
from PIL import Image
from get_data import get_augmentation
from configs.dataset_params import normalize_params
import random
from evaluation.diversity import MultiKCrossChannelMaxPooledSum
def overlapping_features_on_input(model,output, feature_maps, input, target):
W=model.linear.layer.weight
feature_maps=feature_maps.detach().cpu().numpy().squeeze()
print("feature_maps",feature_maps.shape)
if target !=None:
label=target-1
else:
output=output.detach().cpu().numpy()
label=np.argmax(output)
Interpretable_Selection= W[label,:]
print("W",Interpretable_Selection)
input_np=np.array(input)
h,w= input.shape[:2]
print("h,w:",h,w)
Interpretable_Features=[]
input_np=cv2.resize(input_np,(448,448))
Feature_image_list=[input_np]
# color_id=0 #set each feature to singel color
# COLOR=['R','G','B','Y','P','C']
for S in range(len(Interpretable_Selection)):
if Interpretable_Selection[S] != 0:
Interpretable_Features.append(feature_maps[S])
Feature_image=cv2.resize(feature_maps[S],(448,448))
Feature_image=np.uint((Feature_image-np.min(Feature_image))/(np.max(Feature_image)-np.min(Feature_image)) * 255)
Feature_image=Feature_image.astype(np.uint8)
#set each feature to singel color
# if color_id>len(COLOR)-1:
# color_id=color_id%len(COLOR)
# color=COLOR[color_id]
# if color == 'R':
# Feature_image_color=np.zeros_like(input_np)
# Feature_image_color[:,:,0]=Feature_image
# Feature_image=Feature_image_color
# if color == 'G':
# Feature_image_color=np.zeros_like(input_np)
# Feature_image_color[:,:,1]=Feature_image
# Feature_image=Feature_image_color
# if color == 'B':
# Feature_image_color=np.zeros_like(input_np)
# Feature_image_color[:,:,2]=Feature_image
# Feature_image=Feature_image_color
# if color == 'Y':
# Feature_image_color=np.zeros_like(input_np)
# Feature_image_color[:,:,0]=Feature_image
# Feature_image_color[:,:,1]=Feature_image
# Feature_image=Feature_image_color
# if color == 'P':
# Feature_image_color=np.zeros_like(input_np)
# Feature_image_color[:,:,0]=Feature_image
# Feature_image_color[:,:,2]=Feature_image
# Feature_image=Feature_image_color
# if color == 'C':
# Feature_image_color=np.zeros_like(input_np)
# Feature_image_color[:,:,1]=Feature_image
# Feature_image_color[:,:,2]=Feature_image
# Feature_image=Feature_image_color
# color_id+=1
# use Gamma correction
# Feature_image=np.power(Feature_image,1.5)
# use Gamma correction
#set each feature to singel color
Feature_image=cv2.applyColorMap(Feature_image,cv2.COLORMAP_JET)
Feature_image=0.3*Feature_image+0.7*input_np
Feature_image=np.uint((Feature_image-np.min(Feature_image))/(np.max(Feature_image)-np.min(Feature_image)) * 255)
Feature_image=Feature_image.astype(np.uint8)
# path_to_featureimage=f"/home/qixuan/tmp/FeatureImage/FI{S}.jpg"
# cv2.imwrite(path_to_featureimage,Feature_image)
Feature_image = cv2.cvtColor(Feature_image, cv2.COLOR_RGB2BGR)
Feature_image_list.append(Feature_image)
print("len of Features:",len(Interpretable_Features))
return Feature_image_list
def genreate_intepriable_output(input,dataset="CUB2011", arch="resnet50",seed=123456, model_type="qsenn", n_features = 50, n_per_class=5, img_size=448, reduced_strides=False, folder = None, with_featuremaps=True):
n_classes = dataset_constants[dataset]["num_classes"]
# image_re=np.array(input)
input=Image.fromarray(input)
print("input shape",input.size)
model = get_model(arch, n_classes, reduced_strides)
tr=transform_input_img(input,img_size)
# tr=transforms.Compose([
# transforms.Resize(500),
# transforms.CenterCrop(img_size),
# transforms.ToTensor(),
# ])
#TR=get_augmentation(0.1, img_size, False, False, True, True, normalize_params["CUB2011"])
device = torch.device("cpu")
if folder is None:
folder = Path(f"tmp/{arch}/{dataset}/{seed}/")
model.load_state_dict(torch.load(folder / "Trained_DenseModel.pth",map_location=torch.device('cpu')))
state_dict = torch.load(folder / f"{model_type}_{n_features}_{n_per_class}_FinetunedModel.pth",map_location=torch.device('cpu'))
selection= torch.load(folder / f"SlDD_Selection_50.pt",map_location=torch.device('cpu'))
state_dict['linear.selection']=selection
feature_sel, sparse_layer, current_mean, current_std, bias_sparse = extract_sel_mean_std_bias_assignemnt(state_dict)
model.set_model_sldd(feature_sel, sparse_layer, current_mean, current_std, bias_sparse)
model.load_state_dict(state_dict)
input = tr(input)
# path_to_input="/home/qixuan/tmp/FeatureImage/croped.jpg"
# path_to_input_re="/home/qixuan/tmp/FeatureImage/re.jpg"
# path_to_input_concat="/home/qixuan/tmp/FeatureImage/concate.jpg"
# image_re=cv2.cvtColor(image_re, cv2.COLOR_RGB2BGR)
# image_re=cv2.resize(image_re,(448,448))
# image_np = (input * 255).clamp(0, 255).byte()
# image_np = image_np.permute(1, 2, 0).numpy()
# image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
# print("????",input.shape)
# concat=np.vstack((image_re, image_np))
# cv2.imwrite(path_to_input,image_np)
# cv2.imwrite(path_to_input_re,image_re)
# cv2.imwrite(path_to_input_concat,concat)
input= input.unsqueeze(0)
input= input.to(device)
model = model.to(device)
model.eval()
with torch.no_grad():
output, feature_maps, final_features = model(input, with_feature_maps=True, with_final_features=True)
print("featuresmap size:",feature_maps.size())
output_np=output.detach().cpu().numpy()
output_np= np.argmax(output_np)+1
if with_featuremaps:
return output_np,model,feature_maps
else:
return output_np, model
def get_options_from_trainingset(output, model, TR, device,with_other_class):
print("outputclass:",output)
data_dir=Path("tmp/Datasets/CUB200/CUB_200_2011/")
labels = pd.read_csv("image_class_labels.txt", sep=' ', names=['img_id', 'target'])
namelist=pd.read_csv(data_dir/"images.txt",sep=' ',names=['img_id','file_name'])
classlist=pd.read_csv(data_dir/"classes.txt",sep=' ',names=['cl_id','class_name'])
options_output=labels[labels['target']==output]
print(options_output)
print(labels)
options=options_output.sample(4)
#mode 2
if with_other_class:
other_targets=random.sample([i for i in range(1,200)if i != output],3)
all_targets=[output]+other_targets
for tg in other_targets:
others=labels[labels['target']==tg]
options_others=others.sample(4)
options = pd.concat([options, options_others], ignore_index=True)
else:
all_targets=[output]
#shuffled_options = options.sample(frac=1).reset_index(drop=True)
print("shuffled:",options)
op=[]
# resample_img_id_list=[]#resample filter
W=model.linear.layer.weight# intergrate negative features
model.eval()
with torch.no_grad():
for t in all_targets:
# intergrate negative features
W_class=W[t-1,:]
features_id=[ f for f in W_class if f !=0 ]
features_id_neg= [i+1 for i, x in enumerate(features_id) if x < 0]
# intergrate negative features
image = cv2.imread(f"options_heatmap/{t}.jpg")
concatenate_class = np.array(image)
concatenate_class = cv2.cvtColor(concatenate_class, cv2.COLOR_RGB2BGR)
op.append((concatenate_class,features_id_neg))# intergrate negative features
return op
def transform_input_img(input,img_size):
h,w=input.size
rate=h/w
if h >= w:
w_new=img_size
h_new=int(w_new*rate)
else:
h_new=img_size
w_new=int(h_new/rate)
return transforms.Compose([
transforms.Resize((w_new,h_new)),
transforms.CenterCrop(img_size),
transforms.ToTensor(),
])
def post_next_image(OPT: str,key:str):
if OPT==key:
return ("Congradulations! you can simulate the prediction of Model this time",gr.update(interactive=False),gr.update(interactive=False),gr.update(interactive=False),gr.update(interactive=False))
else:
return (f"sorry, what the model predicted is {key}",gr.update(interactive=False),gr.update(interactive=False),gr.update(interactive=False),gr.update(interactive=False))
def get_features_on_interface(input):
img_size=448
output,model=genreate_intepriable_output(input,dataset="CUB2011",
arch="resnet50",seed=123456,
model_type="qsenn", n_features = 50,n_per_class=5,
img_size=448, reduced_strides=False, folder = None,with_featuremaps=False)
TR=get_augmentation(0.1, img_size, False, False, True, True, normalize_params["CUB2011"])
device = torch.device("cpu")
op= get_options_from_trainingset(output, model, TR, device,with_other_class=True)
key=op[0][0]# intergrate negative features
random.shuffle(op)
option=[(op[0][0],"A"),
(op[1][0],"B"),
(op[2][0],"C"),
(op[3][0],"D")]
for value,char in option:
if np.array_equal(value,key):
key_op=char
print("key",key_op)
# if op[0][1]!=[]:
# option[0][1]=f"A,features{', '.join(map(str, op[0][1]))} are negative."
# if op[1][1]!=[]:
# option[1][1]=f"B,features{', '.join(map(str, op[0][1]))} are negative."
# if op[2][1]!=[]:
# option[2][1]=f"C,features{', '.join(map(str, op[0][1]))} are negative."
# if op[3][1]!=[]:
# option[3][1]=f"D,features{', '.join(map(str, op[0][1]))} are negative."
return option, key_op," These are some class explanations from our model for different classes,which of these classes has our model predicted?",gr.update(interactive=False)
def direct_inference(input):
img_size=448
output, model,feature_maps=genreate_intepriable_output(input,dataset="CUB2011",
arch="resnet50",seed=123456,
model_type="qsenn", n_features = 50,n_per_class=5,
img_size=448, reduced_strides=False, folder = None,with_featuremaps=True)
# image_list=overlapping_features_on_input(model,output,feature_maps,input,target=None)
# image_arrays = [np.array(img) for img in image_list]
# concatenated_image = np.concatenate(image_arrays, axis=0)
TR=get_augmentation(0.1, img_size, False, False, True, True, normalize_params["CUB2011"])
device = torch.device("cpu")
concatenated_image=get_options_from_trainingset(output, model, TR, device, with_other_class=False)
#original
Input=Image.fromarray(input)
tr=transform_input_img(Input,img_size)
Input=tr(Input)
image_np = (Input * 255).clamp(0, 255).byte()
image_np = image_np.permute(1, 2, 0).numpy()
# image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
ORI= overlapping_features_on_input(model,output, feature_maps, image_np,output)#input image_np
ORI_arrays = [np.array(img) for img in ORI]
concatenated_ORI = np.concatenate(ORI_arrays, axis=0)
print(concatenated_ORI.shape,concatenated_image[0][0].shape)
concatenated_image_final_array=np.concatenate((concatenated_ORI,concatenated_image[0][0]),axis=1)
print(concatenated_image_final_array.shape)
#original
data_dir=Path("tmp/Datasets/CUB200/CUB_200_2011/")
classlist=pd.read_csv(data_dir/"classes.txt",sep=' ',names=['cl_id','class_name'])
output_name=classlist.loc[classlist['cl_id']==output,'class_name'].values[0]
if concatenated_image[0][1]!=[]:
output_name_and_features=f"{output_name}, features{', '.join(map(str, concatenated_image[0][1]))} are negative."
else:
output_name_and_features=f"{output_name}, all features are positive."
return concatenated_image_final_array, output_name_and_features
def filter_with_diversity(featuremaps,output,weight):
localizer = MultiKCrossChannelMaxPooledSum(range(1, 6), weight, None)
localizer(output.to("cpu"),featuremaps.to("cpu"))
locality, exlusive_locality = localizer.get_result()
diversity = locality[4]
diversity=diversity.item()
return diversity
|