import os from argparse import ArgumentParser from pathlib import Path import numpy as np import torch from tqdm import trange from FeatureDiversityLoss import FeatureDiversityLoss from architectures.model_mapping import get_model from configs.architecture_params import architecture_params from configs.dataset_params import dataset_constants from evaluation.qsenn_metrics import eval_model_on_all_qsenn_metrics from finetuning.map_function import finetune from get_data import get_data from saving.logging import Tee from saving.utils import json_save from train import train, test from training.optim import get_optimizer, get_scheduler_for_model def main(dataset, arch,seed=None, model_type="qsenn", do_dense=True,crop = True, n_features = 50, n_per_class=5, img_size=448, reduced_strides=False): # create random seed, if seed is None if seed is None: seed = np.random.randint(0, 1000000) np.random.seed(seed) torch.manual_seed(seed) dataset_key = dataset if crop: assert dataset in ["CUB2011","TravelingBirds"] dataset_key += "_crop" log_dir = Path.home()/f"tmp/{arch}/{dataset_key}/{seed}/" log_dir.mkdir(parents=True, exist_ok=True) tee = Tee(log_dir / "log.txt") # save log to file n_classes = dataset_constants[dataset]["num_classes"] train_loader, test_loader = get_data(dataset, crop=crop, img_size=img_size) model = get_model(arch, n_classes, reduced_strides) fdl = FeatureDiversityLoss(architecture_params[arch]["beta"], model.linear) OptimizationSchedule = get_scheduler_for_model(model_type, dataset) optimizer, schedule, dense_epochs =get_optimizer(model, OptimizationSchedule) if not os.path.exists(log_dir / "Trained_DenseModel.pth"): if do_dense: for epoch in trange(dense_epochs): model = train(model, train_loader, optimizer, fdl, epoch) schedule.step() if epoch % 5 == 0: test(model, test_loader,epoch) else: print("Using pretrained model, only makes sense for ImageNet") torch.save(model.state_dict(), os.path.join(log_dir, f"Trained_DenseModel.pth")) else: model.load_state_dict(torch.load(log_dir / "Trained_DenseModel.pth")) if not os.path.exists( log_dir/f"Results_DenseModel.json"): metrics_dense = eval_model_on_all_qsenn_metrics(model, test_loader, train_loader) json_save(os.path.join(log_dir, f"Results_DenseModel.json"), metrics_dense) final_model = finetune(model_type, model, train_loader, test_loader, log_dir, n_classes, seed, architecture_params[arch]["beta"], OptimizationSchedule, n_per_class, n_features) torch.save(final_model.state_dict(), os.path.join(log_dir,f"{model_type}_{n_features}_{n_per_class}_FinetunedModel.pth")) metrics_finetuned = eval_model_on_all_qsenn_metrics(final_model, test_loader, train_loader) json_save(os.path.join(log_dir, f"Results_{model_type}_{n_features}_{n_per_class}_FinetunedModel.json"), metrics_finetuned) print("Done") pass if __name__ == '__main__': parser = ArgumentParser() parser.add_argument('--dataset', default="CUB2011", type=str, help='dataset name', choices=["CUB2011", "ImageNet", "TravelingBirds", "StanfordCars"]) parser.add_argument('--arch', default="resnet50", type=str, help='Backbone Feature Extractor', choices=["resnet50", "resnet18"]) parser.add_argument('--model_type', default="qsenn", type=str, help='Type of Model', choices=["qsenn", "sldd"]) parser.add_argument('--seed', default=None, type=int, help='seed, used for naming the folder and random processes. Could be useful to set to have multiple finetune runs (e.g. Q-SENN and SLDD) on the same dense model') # 769567, 552629 parser.add_argument('--do_dense', default=True, type=bool, help='whether to train dense model. Should be true for all datasets except (maybe) ImageNet') parser.add_argument('--cropGT', default=False, type=bool, help='Whether to crop CUB/TravelingBirds based on GT Boundaries') parser.add_argument('--n_features', default=50, type=int, help='How many features to select') #769567 parser.add_argument('--n_per_class', default=5, type=int, help='How many features to assign to each class') parser.add_argument('--img_size', default=448, type=int, help='Image size') parser.add_argument('--reduced_strides', default=False, type=bool, help='Whether to use reduced strides for resnets') args = parser.parse_args() main(args.dataset, args.arch, args.seed, args.model_type, args.do_dense,args.cropGT, args.n_features, args.n_per_class, args.img_size, args.reduced_strides)