Q-SENN_Interface_heatmap / select_with_diversity.py
Haaribo's picture
Add application file
8d4ee22
from load_model import extract_sel_mean_std_bias_assignemnt
from pathlib import Path
from architectures.model_mapping import get_model
from configs.dataset_params import dataset_constants
import torch
import torchvision.transforms as transforms
import pandas as pd
import cv2
import numpy as np
from PIL import Image
from get_data import get_augmentation
from configs.dataset_params import normalize_params
import random
from evaluation.diversity import MultiKCrossChannelMaxPooledSum
from visualization import filter_with_diversity
def select_with_diversity(dataset="CUB2011", arch="resnet50",seed=123456, model_type="qsenn", n_features = 50, n_per_class=5, img_size=448, reduced_strides=False, folder = None):
n_classes = dataset_constants[dataset]["num_classes"]
model = get_model(arch, n_classes, reduced_strides)
if folder is None:
folder = Path.home() / f"tmp/{arch}/{dataset}/{seed}/"
print(folder)
model.load_state_dict(torch.load(folder / "Trained_DenseModel.pth"))#REMOVE
state_dict = torch.load(folder / f"{model_type}_{n_features}_{n_per_class}_FinetunedModel.pth")
selection= torch.load(folder / f"SlDD_Selection_50.pt")
state_dict['linear.selection']=selection
feature_sel, sparse_layer, current_mean, current_std, bias_sparse = extract_sel_mean_std_bias_assignemnt(state_dict)
model.set_model_sldd(feature_sel, sparse_layer, current_mean, current_std, bias_sparse)
model.load_state_dict(state_dict)
W=model.linear.layer.weight
TR=get_augmentation(0.1, img_size, False, False, True, True, normalize_params["CUB2011"])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
model.eval()
#get name list and label
data_dir=Path.home()/"tmp/Datasets/CUB200/CUB_200_2011/"
labels = pd.read_csv(data_dir/"image_class_labels.txt", sep=' ', names=['img_id', 'target'])
namelist=pd.read_csv(data_dir/"images.txt",sep=' ',names=['img_id','file_name'])
# classlist=pd.read_csv(data_dir/"classes.txt",sep=' ',names=['cl_id','class_name'])
# targets=labels.loc[labels['img_id']==i,'target'].values[0]
Label_txt = pd.DataFrame({'img_id': pd.Series(dtype='int'), 'target': pd.Series(dtype='str')})
with torch.no_grad():
for t in range(1, 201):
print("in class:",t)
img_list=labels[labels['target']==t]
l=t-1
weights=W[l,:]
k = (weights > 0).sum().item()
imgid_diver=[]
for i in img_list['img_id']:
filename=namelist.loc[namelist['img_id']==i,'file_name'].values[0]
img=cv2.imread(data_dir/f"images/{filename}")
img=cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img=Image.fromarray(img)
img=TR(img)
img=img.unsqueeze(0)
img=img.to(device)
output, featuremaps =model(img,with_feature_maps=True,with_final_features=False)
#div calculate
localizer = MultiKCrossChannelMaxPooledSum(range(1, k+1), W, None)
localizer(output.to("cuda"),featuremaps.to("cuda"))
locality, exlusive_locality = localizer.get_result()
diversity = locality[k-1]
diversity=diversity.item()
imgid_diver.append((i,diversity))
top_k = sorted(imgid_diver, key=lambda x: x[1], reverse=True)[:4]
top_k_imgids = [imgid for imgid, div in top_k]
t_list = [t] * len(top_k_imgids)
new_data = pd.DataFrame({'img_id': top_k_imgids, 'target': t_list})
Label_txt = pd.concat([Label_txt, new_data], ignore_index=True)
Label_txt.to_csv('image_class_labels.txt', sep=' ', index=False, header=False)
select_with_diversity(dataset="CUB2011", arch="resnet50",seed=123456, model_type="qsenn", n_features = 50, n_per_class=5, img_size=448, reduced_strides=False, folder = None)