Spaces:
Sleeping
Sleeping
from load_model import extract_sel_mean_std_bias_assignemnt | |
from pathlib import Path | |
from architectures.model_mapping import get_model | |
from configs.dataset_params import dataset_constants | |
import torch | |
import torchvision.transforms as transforms | |
import pandas as pd | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
from get_data import get_augmentation | |
from configs.dataset_params import normalize_params | |
import random | |
from evaluation.diversity import MultiKCrossChannelMaxPooledSum | |
from visualization import filter_with_diversity | |
def select_with_diversity(dataset="CUB2011", arch="resnet50",seed=123456, model_type="qsenn", n_features = 50, n_per_class=5, img_size=448, reduced_strides=False, folder = None): | |
n_classes = dataset_constants[dataset]["num_classes"] | |
model = get_model(arch, n_classes, reduced_strides) | |
if folder is None: | |
folder = Path.home() / f"tmp/{arch}/{dataset}/{seed}/" | |
print(folder) | |
model.load_state_dict(torch.load(folder / "Trained_DenseModel.pth"))#REMOVE | |
state_dict = torch.load(folder / f"{model_type}_{n_features}_{n_per_class}_FinetunedModel.pth") | |
selection= torch.load(folder / f"SlDD_Selection_50.pt") | |
state_dict['linear.selection']=selection | |
feature_sel, sparse_layer, current_mean, current_std, bias_sparse = extract_sel_mean_std_bias_assignemnt(state_dict) | |
model.set_model_sldd(feature_sel, sparse_layer, current_mean, current_std, bias_sparse) | |
model.load_state_dict(state_dict) | |
W=model.linear.layer.weight | |
TR=get_augmentation(0.1, img_size, False, False, True, True, normalize_params["CUB2011"]) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(device) | |
model.eval() | |
#get name list and label | |
data_dir=Path.home()/"tmp/Datasets/CUB200/CUB_200_2011/" | |
labels = pd.read_csv(data_dir/"image_class_labels.txt", sep=' ', names=['img_id', 'target']) | |
namelist=pd.read_csv(data_dir/"images.txt",sep=' ',names=['img_id','file_name']) | |
# classlist=pd.read_csv(data_dir/"classes.txt",sep=' ',names=['cl_id','class_name']) | |
# targets=labels.loc[labels['img_id']==i,'target'].values[0] | |
Label_txt = pd.DataFrame({'img_id': pd.Series(dtype='int'), 'target': pd.Series(dtype='str')}) | |
with torch.no_grad(): | |
for t in range(1, 201): | |
print("in class:",t) | |
img_list=labels[labels['target']==t] | |
l=t-1 | |
weights=W[l,:] | |
k = (weights > 0).sum().item() | |
imgid_diver=[] | |
for i in img_list['img_id']: | |
filename=namelist.loc[namelist['img_id']==i,'file_name'].values[0] | |
img=cv2.imread(data_dir/f"images/{filename}") | |
img=cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img=Image.fromarray(img) | |
img=TR(img) | |
img=img.unsqueeze(0) | |
img=img.to(device) | |
output, featuremaps =model(img,with_feature_maps=True,with_final_features=False) | |
#div calculate | |
localizer = MultiKCrossChannelMaxPooledSum(range(1, k+1), W, None) | |
localizer(output.to("cuda"),featuremaps.to("cuda")) | |
locality, exlusive_locality = localizer.get_result() | |
diversity = locality[k-1] | |
diversity=diversity.item() | |
imgid_diver.append((i,diversity)) | |
top_k = sorted(imgid_diver, key=lambda x: x[1], reverse=True)[:4] | |
top_k_imgids = [imgid for imgid, div in top_k] | |
t_list = [t] * len(top_k_imgids) | |
new_data = pd.DataFrame({'img_id': top_k_imgids, 'target': t_list}) | |
Label_txt = pd.concat([Label_txt, new_data], ignore_index=True) | |
Label_txt.to_csv('image_class_labels.txt', sep=' ', index=False, header=False) | |
select_with_diversity(dataset="CUB2011", arch="resnet50",seed=123456, model_type="qsenn", n_features = 50, n_per_class=5, img_size=448, reduced_strides=False, folder = None) | |