ALL-LLMs / app.py
Greff3's picture
Update app.py
13dbab7 verified
""" TypeGPT
@author: NiansuhAI
@email: [email protected]
"""
import numpy as np
import streamlit as st
from openai import OpenAI
import os
import sys
from dotenv import load_dotenv, dotenv_values
load_dotenv()
# initialize the client
client = OpenAI(
base_url="/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fv1%26quot%3B%3C%2Fspan%3E%2C%3C!-- HTML_TAG_END -->
api_key=os.environ.get('API_KEY') # Replace with your token
)
# Create supported models
model_links = {
"GPT-4o": "mistralai/Mistral-Nemo-Instruct-2407",
"GPT-4": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"GPT-3.5": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"Meta-Llama-3-8B-Instruct": "meta-llama/Meta-Llama-3-8B-Instruct",
"Meta-Llama-2-13B-Chat-HF": "meta-llama/Llama-2-13b-chat-hf",
"Meta-Llama-2-7B-Chat-HF": "meta-llama/Llama-2-7b-chat-hf",
"Gemini-1.3-2b-it": "google/gemma-1.1-2b-it",
"Gemini-1.3-7b-it": "google/gemma-1.1-7b-it",
"Mixtral-8x7B-Instruct-v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1",
"Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2",
"Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3",
"Mixtral-8x7B-DPO": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"Starchat2-15b-v0.1": "HuggingFaceH4/starchat2-15b-v0.1",
}
def reset_conversation():
'''
Resets Conversation
'''
st.session_state.conversation = []
st.session_state.messages = []
return None
# Define the available models
models =[key for key in model_links.keys()]
# Create the sidebar with the dropdown for model selection
selected_model = st.sidebar.selectbox("Выбрать модель GPT", models)
#Add reset button to clear conversation
st.sidebar.button('Новый чат', on_click=reset_conversation) #Reset button
# Create a temperature slider
temp_values = st.sidebar.slider('Температура GPT-ChatBot', 0.0, 1.0, (0.5))
st.sidebar.markdown("Температура в GPT-ChatBot влияет на качество и связность генерируемого текста.")
st.sidebar.markdown("**Для оптимального результата рекомендуем выбирать температуру в диапазоне от 0,5 до 0,7**.")
# Create model description
st.sidebar.markdown("*Созданный контент может быть неточным.*")
st.sidebar.markdown("\n Наш сайт: [GPT-ChatBot.ru](https://gpt-chatbot.ru/).")
if "prev_option" not in st.session_state:
st.session_state.prev_option = selected_model
if st.session_state.prev_option != selected_model:
st.session_state.messages = []
# st.write(f"Changed to {selected_model}")
st.session_state.prev_option = selected_model
reset_conversation()
#Pull in the model we want to use
repo_id = model_links[selected_model]
st.subheader(f'[GPT-ChatBot.ru](https://gpt-chatbot.ru/) с моделью {selected_model}')
# st.title(f'GPT-ChatBot сейчас использует {selected_model}')
# Set a default model
if selected_model not in st.session_state:
st.session_state[selected_model] = model_links[selected_model]
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input(f"Привет. Я {selected_model}. Как я могу вам помочь сегодня?"):
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display assistant response in chat message container
with st.chat_message("assistant"):
try:
stream = client.chat.completions.create(
model=model_links[selected_model],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
temperature=temp_values,#0.5,
stream=True,
max_tokens=3000,
)
response = st.write_stream(stream)
except Exception as e:
# st.empty()
response = "Похоже, чат перегружен!\
\n Повторите свой запрос позже:( "
st.write(response)
st.session_state.messages.append({"role": "assistant", "content": response})