File size: 3,870 Bytes
596ba9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
"""
This script creates a CLI demo with transformers backend for the glm-4v-9b model,
allowing users to interact with the model through a command-line interface.

Usage:
- Run the script to start the CLI demo.
- Interact with the model by typing questions and receiving responses.

Note: The script includes a modification to handle markdown to plain text conversion,
ensuring that the CLI interface displays formatted text correctly.
"""

import os
import torch
from threading import Thread
from transformers import (
    AutoTokenizer,
    StoppingCriteria,
    StoppingCriteriaList,
    TextIteratorStreamer, AutoModel, BitsAndBytesConfig
)

from PIL import Image

MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/glm-4v-9b')

tokenizer = AutoTokenizer.from_pretrained(
    MODEL_PATH,
    trust_remote_code=True,
    encode_special_tokens=True
)
model = AutoModel.from_pretrained(
    MODEL_PATH,
    trust_remote_code=True,
    device_map="auto",
    torch_dtype=torch.bfloat16
).eval()

## For INT4 inference
# model = AutoModel.from_pretrained(
#     MODEL_PATH,
#     trust_remote_code=True,
#     quantization_config=BitsAndBytesConfig(load_in_4bit=True),
#     torch_dtype=torch.bfloat16,
#     low_cpu_mem_usage=True
# ).eval()

class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        stop_ids = model.config.eos_token_id
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False


if __name__ == "__main__":
    history = []
    max_length = 1024
    top_p = 0.8
    temperature = 0.6
    stop = StopOnTokens()
    uploaded = False
    image = None
    print("Welcome to the GLM-4-9B CLI chat. Type your messages below.")
    image_path = input("Image Path:")
    try:
        image = Image.open(image_path).convert("RGB")
    except:
        print("Invalid image path. Continuing with text conversation.")
    while True:
        user_input = input("\nYou: ")
        if user_input.lower() in ["exit", "quit"]:
            break
        history.append([user_input, ""])

        messages = []
        for idx, (user_msg, model_msg) in enumerate(history):
            if idx == len(history) - 1 and not model_msg:
                messages.append({"role": "user", "content": user_msg})
                if image and not uploaded:
                    messages[-1].update({"image": image})
                    uploaded = True
                break
            if user_msg:
                messages.append({"role": "user", "content": user_msg})
            if model_msg:
                messages.append({"role": "assistant", "content": model_msg})
        model_inputs = tokenizer.apply_chat_template(
            messages,
            add_generation_prompt=True,
            tokenize=True,
            return_tensors="pt",
            return_dict=True
        ).to(next(model.parameters()).device)
        streamer = TextIteratorStreamer(
            tokenizer=tokenizer,
            timeout=60,
            skip_prompt=True,
            skip_special_tokens=True
        )
        generate_kwargs = {
            **model_inputs,
            "streamer": streamer,
            "max_new_tokens": max_length,
            "do_sample": True,
            "top_p": top_p,
            "temperature": temperature,
            "stopping_criteria": StoppingCriteriaList([stop]),
            "repetition_penalty": 1.2,
            "eos_token_id": [151329, 151336, 151338],
        }
        t = Thread(target=model.generate, kwargs=generate_kwargs)
        t.start()
        print("GLM-4V:", end="", flush=True)
        for new_token in streamer:
            if new_token:
                print(new_token, end="", flush=True)
                history[-1][1] += new_token

        history[-1][1] = history[-1][1].strip()