File size: 4,207 Bytes
83574ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e984f5
 
 
83574ec
 
 
 
 
 
25b1cfe
83574ec
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import torchvision.transforms as transforms

norm_layer = nn.InstanceNorm2d

class ResidualBlock(nn.Module):
    def __init__(self, in_features):
        super(ResidualBlock, self).__init__()

        conv_block = [  nn.ReflectionPad2d(1),
                        nn.Conv2d(in_features, in_features, 3),
                        norm_layer(in_features),
                        nn.ReLU(inplace=True),
                        nn.ReflectionPad2d(1),
                        nn.Conv2d(in_features, in_features, 3),
                        norm_layer(in_features)
                        ]

        self.conv_block = nn.Sequential(*conv_block)

    def forward(self, x):
        return x + self.conv_block(x)


class Generator(nn.Module):
    def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
        super(Generator, self).__init__()

        # Initial convolution block
        model0 = [   nn.ReflectionPad2d(3),
                    nn.Conv2d(input_nc, 64, 7),
                    norm_layer(64),
                    nn.ReLU(inplace=True) ]
        self.model0 = nn.Sequential(*model0)

        # Downsampling
        model1 = []
        in_features = 64
        out_features = in_features*2
        for _ in range(2):
            model1 += [  nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
                        norm_layer(out_features),
                        nn.ReLU(inplace=True) ]
            in_features = out_features
            out_features = in_features*2
        self.model1 = nn.Sequential(*model1)

        model2 = []
        # Residual blocks
        for _ in range(n_residual_blocks):
            model2 += [ResidualBlock(in_features)]
        self.model2 = nn.Sequential(*model2)

        # Upsampling
        model3 = []
        out_features = in_features//2
        for _ in range(2):
            model3 += [  nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
                        norm_layer(out_features),
                        nn.ReLU(inplace=True) ]
            in_features = out_features
            out_features = in_features//2
        self.model3 = nn.Sequential(*model3)

        # Output layer
        model4 = [  nn.ReflectionPad2d(3),
                        nn.Conv2d(64, output_nc, 7)]
        if sigmoid:
            model4 += [nn.Sigmoid()]

        self.model4 = nn.Sequential(*model4)

    def forward(self, x, cond=None):
        out = self.model0(x)
        out = self.model1(out)
        out = self.model2(out)
        out = self.model3(out)
        out = self.model4(out)

        return out

model1 = Generator(3, 1, 3)
model1.load_state_dict(torch.load('model.pth', map_location=torch.device('cpu')))
model1.eval()

model2 = Generator(3, 1, 3)
model2.load_state_dict(torch.load('model2.pth', map_location=torch.device('cpu')))
model2.eval()

def predict(input_img, ver):
    input_img = Image.open(input_img)
    transform = transforms.Compose([transforms.Resize(256, Image.BICUBIC), transforms.ToTensor()])
    input_img = transform(input_img)
    input_img = torch.unsqueeze(input_img, 0)

    drawing = 0
    with torch.no_grad():
        if ver == 'style 2':
            drawing = model2(input_img)[0].detach()
        else:
            drawing = model1(input_img)[0].detach()
    
    drawing = transforms.ToPILImage()(drawing)
    return drawing

title="informative-drawings"
description="""Gradio Demo for line drawing generation.<br> 
This Gradio Demo was build by <a href="https://huggingface.co/gstaff" target="_blank">Grant Stafford @gstaff</a>."""

# article = "<p style='text-align: center'><a href='TODO' target='_blank'>Project Page</a> | <a href='codelink' target='_blank'>Github</a></p>"
examples=[['cat.png', 'style 1'], ['bridge.png', 'style 1'], ['lizard.png', 'style 2'],]


iface = gr.Interface(predict, [gr.inputs.Image(type='filepath'),
    gr.inputs.Radio(['style 1','style 2'], type="value", default='style 1', label='version')],
    gr.outputs.Image(type="pil"), title=title,description=description,examples=examples, theme='gstaff/sketch')

iface.launch()