Spaces:
Running
Running
Upload 2 files
Browse files- demos_audiogen_demo.ipynb +175 -0
- demos_musicgen_demo.ipynb +232 -0
demos_audiogen_demo.ipynb
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# AudioGen\n",
|
8 |
+
"Welcome to AudioGen's demo jupyter notebook. Here you will find a series of self-contained examples of how to use AudioGen in different settings.\n",
|
9 |
+
"\n",
|
10 |
+
"First, we start by initializing AudioGen. For now, we provide only a medium sized model for AudioGen: `facebook/audiogen-medium` - 1.5B transformer decoder. \n",
|
11 |
+
"\n",
|
12 |
+
"**Important note:** This variant is different from the original AudioGen model presented at [\"AudioGen: Textually-guided audio generation\"](https://arxiv.org/abs/2209.15352) as the model architecture is similar to MusicGen with a smaller frame rate and multiple streams of tokens, allowing to reduce generation time."
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "code",
|
17 |
+
"execution_count": null,
|
18 |
+
"metadata": {},
|
19 |
+
"outputs": [],
|
20 |
+
"source": [
|
21 |
+
"from audiocraft.models import AudioGen\n",
|
22 |
+
"\n",
|
23 |
+
"model = AudioGen.get_pretrained('facebook/audiogen-medium')"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "markdown",
|
28 |
+
"metadata": {},
|
29 |
+
"source": [
|
30 |
+
"Next, let us configure the generation parameters. Specifically, you can control the following:\n",
|
31 |
+
"* `use_sampling` (bool, optional): use sampling if True, else do argmax decoding. Defaults to True.\n",
|
32 |
+
"* `top_k` (int, optional): top_k used for sampling. Defaults to 250.\n",
|
33 |
+
"* `top_p` (float, optional): top_p used for sampling, when set to 0 top_k is used. Defaults to 0.0.\n",
|
34 |
+
"* `temperature` (float, optional): softmax temperature parameter. Defaults to 1.0.\n",
|
35 |
+
"* `duration` (float, optional): duration of the generated waveform. Defaults to 10.0.\n",
|
36 |
+
"* `cfg_coef` (float, optional): coefficient used for classifier free guidance. Defaults to 3.0.\n",
|
37 |
+
"\n",
|
38 |
+
"When left unchanged, AudioGen will revert to its default parameters."
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"execution_count": null,
|
44 |
+
"metadata": {},
|
45 |
+
"outputs": [],
|
46 |
+
"source": [
|
47 |
+
"model.set_generation_params(\n",
|
48 |
+
" use_sampling=True,\n",
|
49 |
+
" top_k=250,\n",
|
50 |
+
" duration=5\n",
|
51 |
+
")"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "markdown",
|
56 |
+
"metadata": {},
|
57 |
+
"source": [
|
58 |
+
"Next, we can go ahead and start generating sound using one of the following modes:\n",
|
59 |
+
"* Audio continuation using `model.generate_continuation`\n",
|
60 |
+
"* Text-conditional samples using `model.generate`"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "markdown",
|
65 |
+
"metadata": {},
|
66 |
+
"source": [
|
67 |
+
"### Audio Continuation"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "code",
|
72 |
+
"execution_count": null,
|
73 |
+
"metadata": {},
|
74 |
+
"outputs": [],
|
75 |
+
"source": [
|
76 |
+
"import math\n",
|
77 |
+
"import torchaudio\n",
|
78 |
+
"import torch\n",
|
79 |
+
"from audiocraft.utils.notebook import display_audio\n",
|
80 |
+
"\n",
|
81 |
+
"def get_bip_bip(bip_duration=0.125, frequency=440,\n",
|
82 |
+
" duration=0.5, sample_rate=16000, device=\"cuda\"):\n",
|
83 |
+
" \"\"\"Generates a series of bip bip at the given frequency.\"\"\"\n",
|
84 |
+
" t = torch.arange(\n",
|
85 |
+
" int(duration * sample_rate), device=\"cuda\", dtype=torch.float) / sample_rate\n",
|
86 |
+
" wav = torch.cos(2 * math.pi * 440 * t)[None]\n",
|
87 |
+
" tp = (t % (2 * bip_duration)) / (2 * bip_duration)\n",
|
88 |
+
" envelope = (tp >= 0.5).float()\n",
|
89 |
+
" return wav * envelope"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": null,
|
95 |
+
"metadata": {},
|
96 |
+
"outputs": [],
|
97 |
+
"source": [
|
98 |
+
"# Here we use a synthetic signal to prompt the generated audio.\n",
|
99 |
+
"res = model.generate_continuation(\n",
|
100 |
+
" get_bip_bip(0.125).expand(2, -1, -1), \n",
|
101 |
+
" 16000, ['Whistling with wind blowing', \n",
|
102 |
+
" 'Typing on a typewriter'], \n",
|
103 |
+
" progress=True)\n",
|
104 |
+
"display_audio(res, 16000)"
|
105 |
+
]
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"cell_type": "code",
|
109 |
+
"execution_count": null,
|
110 |
+
"metadata": {},
|
111 |
+
"outputs": [],
|
112 |
+
"source": [
|
113 |
+
"# You can also use any audio from a file. Make sure to trim the file if it is too long!\n",
|
114 |
+
"prompt_waveform, prompt_sr = torchaudio.load(\"../assets/sirens_and_a_humming_engine_approach_and_pass.mp3\")\n",
|
115 |
+
"prompt_duration = 2\n",
|
116 |
+
"prompt_waveform = prompt_waveform[..., :int(prompt_duration * prompt_sr)]\n",
|
117 |
+
"output = model.generate_continuation(prompt_waveform, prompt_sample_rate=prompt_sr, progress=True)\n",
|
118 |
+
"display_audio(output, sample_rate=16000)"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "markdown",
|
123 |
+
"metadata": {},
|
124 |
+
"source": [
|
125 |
+
"### Text-conditional Generation"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": null,
|
131 |
+
"metadata": {},
|
132 |
+
"outputs": [],
|
133 |
+
"source": [
|
134 |
+
"from audiocraft.utils.notebook import display_audio\n",
|
135 |
+
"\n",
|
136 |
+
"output = model.generate(\n",
|
137 |
+
" descriptions=[\n",
|
138 |
+
" 'Subway train blowing its horn',\n",
|
139 |
+
" 'A cat meowing',\n",
|
140 |
+
" ],\n",
|
141 |
+
" progress=True\n",
|
142 |
+
")\n",
|
143 |
+
"display_audio(output, sample_rate=16000)"
|
144 |
+
]
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"cell_type": "code",
|
148 |
+
"execution_count": null,
|
149 |
+
"metadata": {},
|
150 |
+
"outputs": [],
|
151 |
+
"source": []
|
152 |
+
}
|
153 |
+
],
|
154 |
+
"metadata": {
|
155 |
+
"kernelspec": {
|
156 |
+
"display_name": "Python 3 (ipykernel)",
|
157 |
+
"language": "python",
|
158 |
+
"name": "python3"
|
159 |
+
},
|
160 |
+
"language_info": {
|
161 |
+
"codemirror_mode": {
|
162 |
+
"name": "ipython",
|
163 |
+
"version": 3
|
164 |
+
},
|
165 |
+
"file_extension": ".py",
|
166 |
+
"mimetype": "text/x-python",
|
167 |
+
"name": "python",
|
168 |
+
"nbconvert_exporter": "python",
|
169 |
+
"pygments_lexer": "ipython3",
|
170 |
+
"version": "3.9.7"
|
171 |
+
}
|
172 |
+
},
|
173 |
+
"nbformat": 4,
|
174 |
+
"nbformat_minor": 2
|
175 |
+
}
|
demos_musicgen_demo.ipynb
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# MusicGen\n",
|
8 |
+
"Welcome to MusicGen's demo jupyter notebook. Here you will find a series of self-contained examples of how to use MusicGen in different settings.\n",
|
9 |
+
"\n",
|
10 |
+
"First, we start by initializing MusicGen, you can choose a model from the following selection:\n",
|
11 |
+
"1. `facebook/musicgen-small` - 300M transformer decoder.\n",
|
12 |
+
"2. `facebook/musicgen-medium` - 1.5B transformer decoder.\n",
|
13 |
+
"3. `facebook/musicgen-melody` - 1.5B transformer decoder also supporting melody conditioning.\n",
|
14 |
+
"4. `facebook/musicgen-large` - 3.3B transformer decoder.\n",
|
15 |
+
"\n",
|
16 |
+
"We will use the `facebook/musicgen-small` variant for the purpose of this demonstration."
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": 1,
|
22 |
+
"metadata": {},
|
23 |
+
"outputs": [],
|
24 |
+
"source": [
|
25 |
+
"from audiocraft.models import MusicGen\n",
|
26 |
+
"from audiocraft.models import MultiBandDiffusion\n",
|
27 |
+
"\n",
|
28 |
+
"USE_DIFFUSION_DECODER = False\n",
|
29 |
+
"# Using small model, better results would be obtained with `medium` or `large`.\n",
|
30 |
+
"model = MusicGen.get_pretrained('facebook/musicgen-small')\n",
|
31 |
+
"if USE_DIFFUSION_DECODER:\n",
|
32 |
+
" mbd = MultiBandDiffusion.get_mbd_musicgen()"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "markdown",
|
37 |
+
"metadata": {},
|
38 |
+
"source": [
|
39 |
+
"Next, let us configure the generation parameters. Specifically, you can control the following:\n",
|
40 |
+
"* `use_sampling` (bool, optional): use sampling if True, else do argmax decoding. Defaults to True.\n",
|
41 |
+
"* `top_k` (int, optional): top_k used for sampling. Defaults to 250.\n",
|
42 |
+
"* `top_p` (float, optional): top_p used for sampling, when set to 0 top_k is used. Defaults to 0.0.\n",
|
43 |
+
"* `temperature` (float, optional): softmax temperature parameter. Defaults to 1.0.\n",
|
44 |
+
"* `duration` (float, optional): duration of the generated waveform. Defaults to 30.0.\n",
|
45 |
+
"* `cfg_coef` (float, optional): coefficient used for classifier free guidance. Defaults to 3.0.\n",
|
46 |
+
"\n",
|
47 |
+
"When left unchanged, MusicGen will revert to its default parameters."
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "code",
|
52 |
+
"execution_count": null,
|
53 |
+
"metadata": {},
|
54 |
+
"outputs": [],
|
55 |
+
"source": [
|
56 |
+
"model.set_generation_params(\n",
|
57 |
+
" use_sampling=True,\n",
|
58 |
+
" top_k=250,\n",
|
59 |
+
" duration=30\n",
|
60 |
+
")"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "markdown",
|
65 |
+
"metadata": {},
|
66 |
+
"source": [
|
67 |
+
"Next, we can go ahead and start generating music using one of the following modes:\n",
|
68 |
+
"* Unconditional samples using `model.generate_unconditional`\n",
|
69 |
+
"* Music continuation using `model.generate_continuation`\n",
|
70 |
+
"* Text-conditional samples using `model.generate`\n",
|
71 |
+
"* Melody-conditional samples using `model.generate_with_chroma`"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"cell_type": "markdown",
|
76 |
+
"metadata": {},
|
77 |
+
"source": [
|
78 |
+
"### Music Continuation"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"execution_count": null,
|
84 |
+
"metadata": {},
|
85 |
+
"outputs": [],
|
86 |
+
"source": [
|
87 |
+
"import math\n",
|
88 |
+
"import torchaudio\n",
|
89 |
+
"import torch\n",
|
90 |
+
"from audiocraft.utils.notebook import display_audio\n",
|
91 |
+
"\n",
|
92 |
+
"def get_bip_bip(bip_duration=0.125, frequency=440,\n",
|
93 |
+
" duration=0.5, sample_rate=32000, device=\"cuda\"):\n",
|
94 |
+
" \"\"\"Generates a series of bip bip at the given frequency.\"\"\"\n",
|
95 |
+
" t = torch.arange(\n",
|
96 |
+
" int(duration * sample_rate), device=\"cuda\", dtype=torch.float) / sample_rate\n",
|
97 |
+
" wav = torch.cos(2 * math.pi * 440 * t)[None]\n",
|
98 |
+
" tp = (t % (2 * bip_duration)) / (2 * bip_duration)\n",
|
99 |
+
" envelope = (tp >= 0.5).float()\n",
|
100 |
+
" return wav * envelope"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"execution_count": null,
|
106 |
+
"metadata": {},
|
107 |
+
"outputs": [],
|
108 |
+
"source": [
|
109 |
+
"# Here we use a synthetic signal to prompt both the tonality and the BPM\n",
|
110 |
+
"# of the generated audio.\n",
|
111 |
+
"res = model.generate_continuation(\n",
|
112 |
+
" get_bip_bip(0.125).expand(2, -1, -1), \n",
|
113 |
+
" 32000, ['Jazz jazz and only jazz', \n",
|
114 |
+
" 'Heartful EDM with beautiful synths and chords'], \n",
|
115 |
+
" progress=True)\n",
|
116 |
+
"display_audio(res, 32000)"
|
117 |
+
]
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"cell_type": "code",
|
121 |
+
"execution_count": null,
|
122 |
+
"metadata": {},
|
123 |
+
"outputs": [],
|
124 |
+
"source": [
|
125 |
+
"# You can also use any audio from a file. Make sure to trim the file if it is too long!\n",
|
126 |
+
"prompt_waveform, prompt_sr = torchaudio.load(\"../assets/bach.mp3\")\n",
|
127 |
+
"prompt_duration = 2\n",
|
128 |
+
"prompt_waveform = prompt_waveform[..., :int(prompt_duration * prompt_sr)]\n",
|
129 |
+
"output = model.generate_continuation(prompt_waveform, prompt_sample_rate=prompt_sr, progress=True, return_tokens=True)\n",
|
130 |
+
"display_audio(output[0], sample_rate=32000)\n",
|
131 |
+
"if USE_DIFFUSION_DECODER:\n",
|
132 |
+
" out_diffusion = mbd.tokens_to_wav(output[1])\n",
|
133 |
+
" display_audio(out_diffusion, sample_rate=32000)"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "markdown",
|
138 |
+
"metadata": {},
|
139 |
+
"source": [
|
140 |
+
"### Text-conditional Generation"
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"cell_type": "code",
|
145 |
+
"execution_count": null,
|
146 |
+
"metadata": {},
|
147 |
+
"outputs": [],
|
148 |
+
"source": [
|
149 |
+
"from audiocraft.utils.notebook import display_audio\n",
|
150 |
+
"\n",
|
151 |
+
"output = model.generate(\n",
|
152 |
+
" descriptions=[\n",
|
153 |
+
" #'80s pop track with bassy drums and synth',\n",
|
154 |
+
" #'90s rock song with loud guitars and heavy drums',\n",
|
155 |
+
" #'Progressive rock drum and bass solo',\n",
|
156 |
+
" #'Punk Rock song with loud drum and power guitar',\n",
|
157 |
+
" #'Bluesy guitar instrumental with soulful licks and a driving rhythm section',\n",
|
158 |
+
" #'Jazz Funk song with slap bass and powerful saxophone',\n",
|
159 |
+
" 'drum and bass beat with intense percussions'\n",
|
160 |
+
" ],\n",
|
161 |
+
" progress=True, return_tokens=True\n",
|
162 |
+
")\n",
|
163 |
+
"display_audio(output[0], sample_rate=32000)\n",
|
164 |
+
"if USE_DIFFUSION_DECODER:\n",
|
165 |
+
" out_diffusion = mbd.tokens_to_wav(output[1])\n",
|
166 |
+
" display_audio(out_diffusion, sample_rate=32000)"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "markdown",
|
171 |
+
"metadata": {},
|
172 |
+
"source": [
|
173 |
+
"### Melody-conditional Generation"
|
174 |
+
]
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "code",
|
178 |
+
"execution_count": null,
|
179 |
+
"metadata": {},
|
180 |
+
"outputs": [],
|
181 |
+
"source": [
|
182 |
+
"import torchaudio\n",
|
183 |
+
"from audiocraft.utils.notebook import display_audio\n",
|
184 |
+
"\n",
|
185 |
+
"model = MusicGen.get_pretrained('facebook/musicgen-melody')\n",
|
186 |
+
"model.set_generation_params(duration=8)\n",
|
187 |
+
"\n",
|
188 |
+
"melody_waveform, sr = torchaudio.load(\"../assets/bach.mp3\")\n",
|
189 |
+
"melody_waveform = melody_waveform.unsqueeze(0).repeat(2, 1, 1)\n",
|
190 |
+
"output = model.generate_with_chroma(\n",
|
191 |
+
" descriptions=[\n",
|
192 |
+
" '80s pop track with bassy drums and synth',\n",
|
193 |
+
" '90s rock song with loud guitars and heavy drums',\n",
|
194 |
+
" ],\n",
|
195 |
+
" melody_wavs=melody_waveform,\n",
|
196 |
+
" melody_sample_rate=sr,\n",
|
197 |
+
" progress=True, return_tokens=True\n",
|
198 |
+
")\n",
|
199 |
+
"display_audio(output[0], sample_rate=32000)\n",
|
200 |
+
"if USE_DIFFUSION_DECODER:\n",
|
201 |
+
" out_diffusion = mbd.tokens_to_wav(output[1])\n",
|
202 |
+
" display_audio(out_diffusion, sample_rate=32000)"
|
203 |
+
]
|
204 |
+
}
|
205 |
+
],
|
206 |
+
"metadata": {
|
207 |
+
"kernelspec": {
|
208 |
+
"display_name": "Python 3 (ipykernel)",
|
209 |
+
"language": "python",
|
210 |
+
"name": "python3"
|
211 |
+
},
|
212 |
+
"language_info": {
|
213 |
+
"codemirror_mode": {
|
214 |
+
"name": "ipython",
|
215 |
+
"version": 3
|
216 |
+
},
|
217 |
+
"file_extension": ".py",
|
218 |
+
"mimetype": "text/x-python",
|
219 |
+
"name": "python",
|
220 |
+
"nbconvert_exporter": "python",
|
221 |
+
"pygments_lexer": "ipython3",
|
222 |
+
"version": "3.9.16"
|
223 |
+
},
|
224 |
+
"vscode": {
|
225 |
+
"interpreter": {
|
226 |
+
"hash": "b02c911f9b3627d505ea4a19966a915ef21f28afb50dbf6b2115072d27c69103"
|
227 |
+
}
|
228 |
+
}
|
229 |
+
},
|
230 |
+
"nbformat": 4,
|
231 |
+
"nbformat_minor": 2
|
232 |
+
}
|