ai-card-hub / app.py
GotThatData's picture
Update
3736c3f verified
from pydrive2.auth import GoogleAuth
from pydrive2.drive import GoogleDrive
import os
import gradio as gr
from datasets import load_dataset, Dataset, concatenate_datasets
import pandas as pd
from PIL import Image
from tqdm import tqdm
import logging
import yaml
from huggingface_hub import login
import json # Add this import
# Authenticate with Hugging Face
HF_TOKEN = os.getenv('HF_TOKEN')
if HF_TOKEN:
login(token=HF_TOKEN)
else:
logger.warning("No Hugging Face token found. Please add HF_TOKEN to your Space secrets.")
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Load settings
if not os.path.exists("settings.yaml"):
raise FileNotFoundError("settings.yaml file is missing. Please add it with 'client_secrets_file'.")
with open('settings.yaml', 'r') as file:
settings = yaml.safe_load(file)
# Utility Functions
def safe_load_dataset(dataset_name):
"""Load Hugging Face dataset safely."""
try:
dataset = load_dataset(dataset_name)
return dataset, len(dataset['train']) if 'train' in dataset else 0
except Exception as e:
logger.info(f"No existing dataset found. Starting fresh. Error: {str(e)}")
return None, 0
def is_valid_image(file_path):
"""Check if a file is a valid image."""
try:
with Image.open(file_path) as img:
img.verify()
return True
except Exception as e:
logger.error(f"Invalid image: {file_path}. Error: {str(e)}")
return False
def validate_input(folder_id, naming_convention):
"""Validate user input."""
if not folder_id or not folder_id.strip():
return False, "Folder ID cannot be empty"
if not naming_convention or not naming_convention.strip():
return False, "Naming convention cannot be empty"
if not naming_convention.replace('_', '').isalnum():
return False, "Naming convention should only contain letters, numbers, and underscores"
return True, ""
def initialize_dataset():
"""Initialize or verify the dataset structure."""
try:
# Check if the README.md exists, if not create it
readme_content = """# Sports Cards Dataset
This dataset contains sports card images with structured metadata. Each image is named using a consistent convention and includes relevant information about the card.
## Dataset Structure
```
sports_card_{number}.jpg - Card images
```
## Features
- file_path: Path to the image file
- original_name: Original filename of the card
- new_name: Standardized filename
- image: Image data
## Usage
```python
from datasets import load_dataset
dataset = load_dataset("GotThatData/sports-cards")
```
## License
This dataset is licensed under MIT.
## Creator
Created by GotThatData
"""
# Create dataset info content
dataset_info = {
"description": "A collection of sports card images with metadata",
"citation": "",
"homepage": "https://huggingface.co/datasets/GotThatData/sports-cards",
"license": "mit",
"features": {
"file_path": {"dtype": "string", "_type": "Value"},
"original_name": {"dtype": "string", "_type": "Value"},
"new_name": {"dtype": "string", "_type": "Value"},
"image": {"dtype": "string", "_type": "Value"}
},
"splits": ["train"]
}
# Write files
with open("README.md", "w") as f:
f.write(readme_content)
with open("dataset-info.json", "w") as f:
json.dump(dataset_info, f, indent=2)
# Upload files to repository
upload_file(
path_or_fileobj="README.md",
path_in_repo="README.md",
repo_id="GotThatData/sports-cards",
repo_type="dataset"
)
upload_file(
path_or_fileobj="dataset-info.json",
path_in_repo="dataset-info.json",
repo_id="GotThatData/sports-cards",
repo_type="dataset"
)
return True, "Dataset structure initialized successfully"
except Exception as e:
return False, f"Failed to initialize dataset: {str(e)}"
# DatasetManager Class
class DatasetManager:
def __init__(self, local_images_dir="downloaded_cards"):
self.local_images_dir = local_images_dir
self.drive = None
self.dataset_name = "GotThatData/sports-cards"
os.makedirs(local_images_dir, exist_ok=True)
# Initialize dataset structure
success, message = initialize_dataset()
if not success:
logger.warning(f"Dataset initialization warning: {message}")
def authenticate_drive(self):
"""Authenticate with Google Drive."""
try:
gauth = GoogleAuth()
gauth.settings['client_config_file'] = settings['client_secrets_file']
# Try to load saved credentials
gauth.LoadCredentialsFile("credentials.txt")
if gauth.credentials is None:
gauth.LocalWebserverAuth()
elif gauth.access_token_expired:
gauth.Refresh()
else:
gauth.Authorize()
gauth.SaveCredentialsFile("credentials.txt")
self.drive = GoogleDrive(gauth)
return True, "Successfully authenticated with Google Drive"
except Exception as e:
logger.error(f"Authentication failed: {str(e)}")
return False, f"Authentication failed: {str(e)}"
def download_and_rename_files(self, drive_folder_id, naming_convention):
"""Download files from Google Drive and rename them."""
if not self.drive:
return False, "Google Drive not authenticated", []
try:
query = f"'{drive_folder_id}' in parents and trashed=false"
file_list = self.drive.ListFile({'q': query}).GetList()
if not file_list:
logger.warning(f"No files found in folder: {drive_folder_id}")
return False, "No files found in the specified folder.", []
existing_dataset, start_index = safe_load_dataset(self.dataset_name)
renamed_files = []
processed_count = 0
error_count = 0
for i, file in enumerate(tqdm(file_list, desc="Downloading files", unit="file")):
if 'mimeType' in file and 'image' in file['mimeType'].lower():
new_filename = f"{naming_convention}_{start_index + processed_count + 1}.jpg"
file_path = os.path.join(self.local_images_dir, new_filename)
try:
file.GetContentFile(file_path)
if is_valid_image(file_path):
renamed_files.append({
'file_path': file_path,
'original_name': file['title'],
'new_name': new_filename
})
processed_count += 1
logger.info(f"Successfully processed: {file['title']} -> {new_filename}")
else:
error_count += 1
if os.path.exists(file_path):
os.remove(file_path)
except Exception as e:
error_count += 1
logger.error(f"Error processing file {file['title']}: {str(e)}")
if os.path.exists(file_path):
os.remove(file_path)
status_message = f"Processed {processed_count} images successfully"
if error_count > 0:
status_message += f" ({error_count} files failed)"
return True, status_message, renamed_files
except Exception as e:
logger.error(f"Download error: {str(e)}")
return False, f"Error during download: {str(e)}", []
def update_huggingface_dataset(self, renamed_files):
"""Update Hugging Face dataset with new images."""
if not renamed_files:
return False, "No files to update"
try:
df = pd.DataFrame(renamed_files)
new_dataset = Dataset.from_pandas(df)
existing_dataset, _ = safe_load_dataset(self.dataset_name)
if existing_dataset and 'train' in existing_dataset:
combined_dataset = concatenate_datasets([existing_dataset['train'], new_dataset])
else:
combined_dataset = new_dataset
combined_dataset.push_to_hub(self.dataset_name, split="train")
return True, f"Successfully updated dataset '{self.dataset_name}' with {len(renamed_files)} new images."
except Exception as e:
logger.error(f"Dataset update error: {str(e)}")
return False, f"Error updating Hugging Face dataset: {str(e)}"
def process_pipeline(folder_id, naming_convention):
"""Main pipeline for processing images and updating dataset."""
# Validate input
is_valid, error_message = validate_input(folder_id, naming_convention)
if not is_valid:
return error_message, []
manager = DatasetManager()
# Step 1: Authenticate Google Drive
auth_success, auth_message = manager.authenticate_drive()
if not auth_success:
return auth_message, []
# Step 2: Download and rename files
success, message, renamed_files = manager.download_and_rename_files(folder_id, naming_convention)
if not success:
return message, []
# Step 3: Update Hugging Face dataset
success, hf_message = manager.update_huggingface_dataset(renamed_files)
return f"{message}\n{hf_message}", renamed_files
def process_ui(folder_id, naming_convention):
"""UI handler for the process pipeline"""
status, renamed_files = process_pipeline(folder_id, naming_convention)
table_data = [[file['original_name'], file['new_name'], file['file_path']]
for file in renamed_files] if renamed_files else []
return status, table_data
# Custom CSS for web-safe fonts and improved styling
custom_css = """
div.gradio-container {
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif !important;
}
div.gradio-container button {
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif !important;
}
div.gradio-container input {
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif !important;
}
.gr-form {
background-color: #ffffff;
border-radius: 8px;
padding: 20px;
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
}
.gr-button {
background-color: #2c5282;
color: white;
}
.gr-button:hover {
background-color: #2b6cb0;
}
.gr-input {
border: 1px solid #e2e8f0;
}
.gr-input:focus {
border-color: #4299e1;
box-shadow: 0 0 0 1px #4299e1;
}
"""
# Gradio interface
demo = gr.Interface(
fn=process_ui,
inputs=[
gr.Textbox(
label="Google Drive Folder ID",
placeholder="Enter the folder ID from the URL",
info="Found in your Google Drive folder's URL"
),
gr.Textbox(
label="Naming Convention",
placeholder="e.g., sports_card",
value="sports_card",
info="Use only letters, numbers, and underscores"
)
],
outputs=[
gr.Textbox(
label="Status",
lines=3
),
gr.Dataframe(
headers=["Original Name", "New Name", "File Path"],
wrap=True
)
],
title="Sports Cards Dataset Processor",
description="""
Instructions:
1. Enter the Google Drive folder ID (found in the folder's URL)
2. Specify a naming convention for the files (e.g., 'sports_card')
3. Click submit to start processing
Note: Only image files will be processed. Invalid images will be skipped.
""",
css=custom_css,
theme="default"
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860
)