import gradio as gr import torch import torchvision import numpy as np from PIL import Image # Load model weights model = torch.hub.load('ultralytics/yolov5:v6.2', 'custom', "model_weights/datasets_1000_41class.pt") # Define a yolo prediction function def yolo(im, size=640): g = (size / max(im.size)) # gain im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize results = model(im) # inference results.render() # updates results.imgs with boxes and labels return Image.fromarray(results.imgs[0]) inputs = gr.inputs.Image(type='pil', label="Original Image") outputs = gr.outputs.Image(type="pil", label="Output Image") title = "BandiCount: Detecting Australian native animal species" description = "BandiCount: Detecting Australian native animal species in NSW national parks, using object detection. Upload an image or click an example image to use." article = "" examples = [['data/baby_wombat.jpg'], ['data/lyrebird2.jpg'],['data/echidna.gif'], ['data/pademelon.jpg'], ['data/kookaburras.jpg'], \ ['data/Bandicoot.jpg'], ['data/BrushtailPossum.jpg'], ['data/Macropod.jpg'], ['data/cat.jpg'], ['data/dingo.jpg'],\ ['data/fox.jpg'], ['data/goats.jpg'], ['data/quoll.jpg'],['data/bush_turkey.jpg']] gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, theme="huggingface").launch(enable_queue=True)