Kieran Gookey commited on
Commit
2145acc
·
1 Parent(s): 6ad144b

Added string

Browse files
Files changed (2) hide show
  1. app.py +11 -1
  2. requirements.txt +2 -1
app.py CHANGED
@@ -7,6 +7,8 @@ from llama_index import ServiceContext, VectorStoreIndex
7
  from llama_index.schema import Document
8
  import uuid
9
  from llama_index.vector_stores.types import MetadataFilters, ExactMatchFilter
 
 
10
 
11
  inference_api_key = st.secrets["INFRERENCE_API_TOKEN"]
12
 
@@ -16,6 +18,12 @@ inference_api_key = st.secrets["INFRERENCE_API_TOKEN"]
16
  # llm_model_name = st.text_input(
17
  # 'Embed Model name', "mistralai/Mistral-7B-Instruct-v0.2")
18
 
 
 
 
 
 
 
19
  embed_model_name = "jinaai/jina-embedding-s-en-v1"
20
  llm_model_name = "mistralai/Mistral-7B-Instruct-v0.2"
21
 
@@ -57,12 +65,14 @@ if html_file is not None:
57
  documents, show_progress=True, metadata={"source": "HTML"}, service_context=service_context)
58
 
59
  query_engine = index.as_query_engine(
60
- filters=filters, service_context=service_context)
61
 
62
  response = query_engine.query(query)
63
 
64
  st.write(response.response)
65
 
 
 
66
  # if st.button('Start Pipeline'):
67
  # if html_file is not None and embed_model_name is not None and llm_model_name is not None and query is not None:
68
  # st.write('Running Pipeline')
 
7
  from llama_index.schema import Document
8
  import uuid
9
  from llama_index.vector_stores.types import MetadataFilters, ExactMatchFilter
10
+ from typing import List
11
+ from pydantic import BaseModel
12
 
13
  inference_api_key = st.secrets["INFRERENCE_API_TOKEN"]
14
 
 
18
  # llm_model_name = st.text_input(
19
  # 'Embed Model name', "mistralai/Mistral-7B-Instruct-v0.2")
20
 
21
+
22
+ class PriceModel(BaseModel):
23
+ """Data model for price"""
24
+ price: str
25
+
26
+
27
  embed_model_name = "jinaai/jina-embedding-s-en-v1"
28
  llm_model_name = "mistralai/Mistral-7B-Instruct-v0.2"
29
 
 
65
  documents, show_progress=True, metadata={"source": "HTML"}, service_context=service_context)
66
 
67
  query_engine = index.as_query_engine(
68
+ filters=filters, service_context=service_context, response_mode="tree_summarize", output_cls=PriceModel)
69
 
70
  response = query_engine.query(query)
71
 
72
  st.write(response.response)
73
 
74
+ st.write(f'Price: {response.price}')
75
+
76
  # if st.button('Start Pipeline'):
77
  # if html_file is not None and embed_model_name is not None and llm_model_name is not None and query is not None:
78
  # st.write('Running Pipeline')
requirements.txt CHANGED
@@ -1,3 +1,4 @@
1
  streamlit
2
  llama_index
3
- uuid
 
 
1
  streamlit
2
  llama_index
3
+ uuid
4
+ pydantic