import streamlit as st import streamlit.components.v1 as components # Define the Hugging Face spaces URLs urls = { "DRAW : Text 2 Img": "https://ehristoforu-dalle-3-xl-lora-v2.hf.space/", "RAG : PDF Assistant": "https://cvachet-pdf-chatbot.hf.space/", "CONVO 4 : AI Chat": "https://ngebodh-simplechatbot.hf.space/", "Parler : Voice Chat": "https://parler-tts-parler-tts.hf.space/" } # Title of the app st.title("ANTI-GPT 🤖") st.header("AI Multi-Modal Hub") st.markdown("---") # Instructions for users st.markdown("Select a task below to start interacting with the respective model.") # Define a single row layout with Streamlit columns cols = st.columns(len(urls)) # Create columns for each option # Display each task with a button for i, (task, url) in enumerate(urls.items()): with cols[i]: if st.button(task, key=task): st.session_state.selected_task = task # Check if a task has been selected if "selected_task" in st.session_state: task = st.session_state.selected_task st.subheader(f"{task}") st.markdown("---") # Embed the Hugging Face space in an iframe with maximum dimensions components.html( f''' ''', height=800, # This height is for the Streamlit container; the iframe will take the full window height scrolling=True ) # Footer st.markdown("---") st.write("Integrated by Gokulnath, An Open-Source contribution and integration :)")