Gladiator commited on
Commit
cf53b75
·
1 Parent(s): 9e74753

test colab dev

Browse files
Files changed (2) hide show
  1. app.py +5 -0
  2. src/vanilla_summarizer.py +0 -83
app.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+
4
+ if __name__ == "__main__":
5
+ st.header("Streamlit 🤝 Colab")
src/vanilla_summarizer.py CHANGED
@@ -1,83 +0,0 @@
1
- import torch
2
- import streamlit as st
3
- from transformers import BartTokenizer, BartForConditionalGeneration
4
- from transformers import T5Tokenizer, T5ForConditionalGeneration
5
-
6
- st.title('Text Summarization Demo')
7
- st.markdown('Using BART and T5 transformer model')
8
-
9
- model = st.selectbox('Select the model', ('BART', 'T5'))
10
-
11
- if model == 'BART':
12
- _num_beams = 4
13
- _no_repeat_ngram_size = 3
14
- _length_penalty = 1
15
- _min_length = 12
16
- _max_length = 128
17
- _early_stopping = True
18
- else:
19
- _num_beams = 4
20
- _no_repeat_ngram_size = 3
21
- _length_penalty = 2
22
- _min_length = 30
23
- _max_length = 200
24
- _early_stopping = True
25
-
26
- col1, col2, col3 = st.beta_columns(3)
27
- _num_beams = col1.number_input("num_beams", value=_num_beams)
28
- _no_repeat_ngram_size = col2.number_input("no_repeat_ngram_size", value=_no_repeat_ngram_size)
29
- _length_penalty = col3.number_input("length_penalty", value=_length_penalty)
30
-
31
- col1, col2, col3 = st.beta_columns(3)
32
- _min_length = col1.number_input("min_length", value=_min_length)
33
- _max_length = col2.number_input("max_length", value=_max_length)
34
- _early_stopping = col3.number_input("early_stopping", value=_early_stopping)
35
-
36
- text = st.text_area('Text Input')
37
-
38
-
39
- def run_model(input_text):
40
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
41
-
42
- if model == "BART":
43
- bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
44
- bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
45
- input_text = str(input_text)
46
- input_text = ' '.join(input_text.split())
47
- input_tokenized = bart_tokenizer.encode(input_text, return_tensors='pt').to(device)
48
- summary_ids = bart_model.generate(input_tokenized,
49
- num_beams=_num_beams,
50
- no_repeat_ngram_size=_no_repeat_ngram_size,
51
- length_penalty=_length_penalty,
52
- min_length=_min_length,
53
- max_length=_max_length,
54
- early_stopping=_early_stopping)
55
-
56
- output = [bart_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in
57
- summary_ids]
58
- st.write('Summary')
59
- st.success(output[0])
60
-
61
- else:
62
- t5_model = T5ForConditionalGeneration.from_pretrained("t5-base")
63
- t5_tokenizer = T5Tokenizer.from_pretrained("t5-base")
64
- input_text = str(input_text).replace('\n', '')
65
- input_text = ' '.join(input_text.split())
66
- input_tokenized = t5_tokenizer.encode(input_text, return_tensors="pt").to(device)
67
- summary_task = torch.tensor([[21603, 10]]).to(device)
68
- input_tokenized = torch.cat([summary_task, input_tokenized], dim=-1).to(device)
69
- summary_ids = t5_model.generate(input_tokenized,
70
- num_beams=_num_beams,
71
- no_repeat_ngram_size=_no_repeat_ngram_size,
72
- length_penalty=_length_penalty,
73
- min_length=_min_length,
74
- max_length=_max_length,
75
- early_stopping=_early_stopping)
76
- output = [t5_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in
77
- summary_ids]
78
- st.write('Summary')
79
- st.success(output[0])
80
-
81
-
82
- if st.button('Submit'):
83
- run_model(text)