File size: 3,061 Bytes
85ebc15
fe021fb
 
e9ee3ed
85ebc15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13a4332
85ebc15
 
 
 
7cbe3c0
85ebc15
 
 
 
6496ba4
85ebc15
 
fe021fb
 
 
 
 
 
 
 
 
32ff21e
 
 
fe021fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9ee3ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import re
import requests
from bs4 import BeautifulSoup
from nltk.tokenize import sent_tokenize

emoji_pattern = re.compile(
    "["
    u"\U0001F600-\U0001F64F"  # emoticons
    u"\U0001F300-\U0001F5FF"  # symbols & pictographs
    u"\U0001F680-\U0001F6FF"  # transport & map symbols
    u"\U0001F1E0-\U0001F1FF"  # flags (iOS)
    u"\U00002702-\U000027B0"
    u"\U000024C2-\U0001F251"
    "]+",
    flags=re.UNICODE,
)


def clean_text(x):
    # x = x.lower()  # lowercase
    x = x.encode("ascii", "ignore").decode()  # unicode
    x = re.sub(r"https*\S+", " ", x)  # url
    x = re.sub(r"@\S+", " ", x)  # mentions
    x = re.sub(r"#\S+", " ", x)  # hastags
    # x = x.replace("'", "")  # remove ticks
    # x = re.sub("[%s]" % re.escape(string.punctuation), " ", x)  # punctuation
    # x = re.sub(r"\w*\d+\w*", "", x)  # numbers
    x = re.sub(r"\s{2,}", " ", x)  # over spaces
    x = emoji_pattern.sub(r"", x)  # emojis
    x = re.sub("[^.,!?A-Za-z0-9]+", " ", x)  # special charachters except .,!?

    return x


def fetch_article_text(url: str):

    r = requests.get(url)
    soup = BeautifulSoup(r.text, "html.parser")
    results = soup.find_all(["h1", "p"])
    text = [result.text for result in results]
    ARTICLE = " ".join(text)
    ARTICLE = ARTICLE.replace(".", ".<eos>")
    ARTICLE = ARTICLE.replace("!", "!<eos>")
    ARTICLE = ARTICLE.replace("?", "?<eos>")
    sentences = ARTICLE.split("<eos>")
    current_chunk = 0
    chunks = []
    for sentence in sentences:
        if len(chunks) == current_chunk + 1:
            if len(chunks[current_chunk]) + len(sentence.split(" ")) <= 500:
                chunks[current_chunk].extend(sentence.split(" "))
            else:
                current_chunk += 1
                chunks.append(sentence.split(" "))
        else:
            print(current_chunk)
            chunks.append(sentence.split(" "))

    for chunk_id in range(len(chunks)):
        chunks[chunk_id] = " ".join(chunks[chunk_id])

    return ARTICLE, chunks


def preprocess_text_for_abstractive_summarization(tokenizer, text):
    sentences = sent_tokenize(text)

    # initialize
    length = 0
    chunk = ""
    chunks = []
    count = -1
    for sentence in sentences:
        count += 1
        combined_length = (
            len(tokenizer.tokenize(sentence)) + length
        )  # add the no. of sentence tokens to the length counter

        if combined_length <= tokenizer.max_len_single_sentence:  # if it doesn't exceed
            chunk += sentence + " "  # add the sentence to the chunk
            length = combined_length  # update the length counter

            # if it is the last sentence
            if count == len(sentences) - 1:
                chunks.append(chunk.strip())  # save the chunk

        else:
            chunks.append(chunk.strip())  # save the chunk

            # reset
            length = 0
            chunk = ""

            # take care of the overflow sentence
            chunk += sentence + " "
            length = len(tokenizer.tokenize(sentence))

    return chunks