""" A Utility calss which contains most commonly used functions """ import huggingface_hub import huggingface_hub.hf_api import psutil import torch import functools import socket import cryptography import cryptography.fernet import os class Utility(object): def __init__(self, name="Utility") -> None: self.name = name self.author = "Duc Haba, Girish" self._pp("Hello from class", str(self.__class__) + " Class: " + str(self.__class__.__name__)) self._pp("Code name", self.name) #Define encrypted keys self._huggingface_key="gAAAAABkgtmOIjpnjwXFWmgh1j2et2kMjHUze-ym6h3BieAp34Sqkqv3EVYvRinETvpw-kXu7RSRl5_9FqrYe-7unfakMvMkU8nHrfB3hBSC76ZTXwkVSzlN0RfBNs9NL8BGjaSJ8mz8" #Key for crypto self._fkey=os.getenv("hf_encrypt_decrypt_key") return # Print : Pretty print output name-value line def _pp(self, a, b,is_print=True): # print("%34s : %s" % (str(a), str(b))) x = f'{"%34s" % str(a)} : {str(b)}' y = None if (is_print): print(x) else: y = x return y # Print : Pretty print the header or footer lines def _ph(self,is_print=True): x = f'{"-"*34} : {"-"*34}' y = None if (is_print): print(x) else: y = x return y # Hugging face : Login to Hugging face def _login_hface(self): huggingface_hub.login(self._decrypt_it(self._huggingface_key), add_to_git_credential=True) # non-blocking login self._ph() return # Hugging face : Push files to Hugging face def push_hface_files(self, hf_names, hf_space="GirishKiran/yml", local_dir="/content/"): f = str(hf_names) + " is not iteratable, type: " + str(type(hf_names)) try: for f in hf_names: lo = local_dir + f huggingface_hub.upload_file( path_or_fileobj=lo, path_in_repo=f, repo_id=hf_space, repo_type=huggingface_hub.REPO_TYPE_SPACE) except Exception as e: self._pp("*Error", e) return # Hugging face : Push folders to Hugging face def push_hface_folder(self, hf_folder, hf_space_id, hf_dest_folder=None): api = huggingface_hub.HfApi() api.upload_folder(folder_path=hf_folder, repo_id=hf_space_id, path_in_repo=hf_dest_folder, repo_type="space") return # Hugging face : Login to Hugging face def _login_hface(self): huggingface_hub.login(self._decrypt_it(self._huggingface_key), add_to_git_credential=True) # non-blocking login self._ph() return # System Info : Fetch available CPU and RAM of the system def fetch_system_info(self): s='' # Get CPU usage as a percentage cpu_usage = psutil.cpu_percent() # Get available memory in bytes mem = psutil.virtual_memory() # Convert bytes to gigabytes mem_total_gb = mem.total / (1024 ** 3) mem_available_gb = mem.available / (1024 ** 3) mem_used_gb = mem.used / (1024 ** 3) # Print the results s += f"CPU usage: {cpu_usage}%\n" s += f"Total memory: {mem_total_gb:.2f} GB\n" s += f"Available memory: {mem_available_gb:.2f} GB\n" # print(f"Used memory: {mem_used_gb:.2f} GB") s += f"Memory usage: {mem_used_gb/mem_total_gb:.2f}%\n" return # System Info : Fetch GPU information of the system def fetch_gpu_info(self): s='' try: s += f'Your GPU is the {torch.cuda.get_device_name(0)}\n' s += f'GPU ready staus {torch.cuda.is_available()}\n' s += f'GPU allocated RAM: {round(torch.cuda.memory_allocated(0)/1024**3,1)} GB\n' s += f'GPU reserved RAM {round(torch.cuda.memory_reserved(0)/1024**3,1)} GB\n' except Exception as e: s += f'**Warning, No GPU: {e}' return s # System Info : Fetch host ip address def fetch_host_ip(self): s='' hostname = socket.gethostname() ip_address = socket.gethostbyname(hostname) s += f"Hostname: {hostname}\n" s += f"IP Address: {ip_address}\n" return s # Create and writes data to the file def write_file(self,fname, txt): f = open(fname, "w") f.writelines("\n".join(txt)) f.close() return # Crypto : Fetch crypto key def _fetch_crypt(self,is_generate=False): s=self._fkey[::-1] if (is_generate): s=open(self._xkeyfile, "rb").read() return s # Crypto : Decrypt value def _decrypt_it(self, x): y = self._fetch_crypt() f = cryptography.fernet.Fernet(y) m = f.decrypt(x) return m.decode() # Crypto : Encrypt value def _encrypt_it(self, x): key = self._fetch_crypt() p = x.encode() f = cryptography.fernet.Fernet(key) y = f.encrypt(p) return y # Capitalizes the first letter of each word in a list. def capitalize_first_letter(self, list_of_words): capitalized_words = [] for word in list_of_words: capitalized_word = word[0].upper() + word[1:] capitalized_words.append(capitalized_word) return capitalized_words # Add method to class def add_method(cls): def decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): return func(*args, **kwargs) setattr(cls, func.__name__, wrapper) return func # returning func means func can still be used normally return decorator """ This file contains multiple Python classes and responssible to provide Emotions based on the given user input Currently it supports emotions like Anger, Joy, Optimism and Sadness""" from transformers import AutoTokenizer, AutoModelForSequenceClassification from matplotlib.colors import LinearSegmentedColormap import scipy import scipy.special import pandas class SentimentAnalyser(object): # initialize the object def __init__(self, name="Sentiment",*args, **kwargs): super(SentimentAnalyser, self).__init__(*args, **kwargs) self.author = "Duc Haba, Girish" self.name = name utility = Utility(name="Calling From SentimentAnalyser") self.utility = utility utility._ph() utility._pp("Hello from class", str(self.__class__) + " Class: " + str(self.__class__.__name__)) utility._pp("Code name", self.name) utility._pp("Author is" , self.author) utility._ph() print(utility.fetch_system_info()) utility._ph() # print(utility.fetch_gpu_info()) utility._ph() # print(utility.fetch_host_ip()) utility._ph() self._init_model() utility._login_hface() return # initalise the model def _init_model(self): modelLink = "bhadresh-savani/distilbert-base-uncased-emotion" #"SamLowe/roberta-base-go_emotions" self.tokenizer = AutoTokenizer.from_pretrained(modelLink) self.model = AutoModelForSequenceClassification.from_pretrained(modelLink) self.whisper_model = whisper.load_model("small") return sentiment = SentimentAnalyser(name="EmotionAnalyser") @add_method(SentimentAnalyser) def _predict_sentiment(p): # Tokenize input inputs = sentiment.tokenizer(p, return_tensors="pt") # Pass inputs through model outputs = sentiment.model(**inputs) # sentiment_map = sentiment.utility.capitalize_first_letter(sentiment.model.config.label2id.keys()) out_data = outputs[0][0] scores = out_data.detach().numpy() scores = scipy.special.softmax(scores) sentiment_map = ['Sadness', 'Joy', 'Love', 'Anger', 'Fear' , "Surprise"] df_out = pandas.DataFrame([scores], columns=sentiment_map) df_out = df_out[['Love' , 'Joy', 'Surprise' , 'Fear', 'Sadness', 'Anger']] return df_out @add_method(SentimentAnalyser) def draw_bar_plot(df_data, title='Sentiment Analysis', xlabel='p string', ylabel='Emotion Score'): graphCmap=LinearSegmentedColormap.from_list('gr',["g", "w", "r"]) pic = df_data.plot.bar(cmap=graphCmap, title=title, ylabel=ylabel, xlabel=xlabel, grid=True) return pic @add_method(SentimentAnalyser) def predict_sentiment(input_text): df_out = _predict_sentiment(input_text) max_column = df_out.loc[0].idxmax() max_value = df_out.loc[0].max() title = f'Sentiment Analysis: {max_column}: {round(max_value*100,1)}%' xlabel= f'Input: {input_text}' pic = draw_bar_plot(df_out, title=title, xlabel=xlabel) return pic.get_figure(), df_out.to_json() import gradio whisper_audio = gradio.Audio(label="Audio Input", source="microphone", type="filepath") whisper_button = gradio.Button("Convert Audio to Text") input_text = gradio.Textbox(lines=1, label="Text Input", placeholder="type text here") in_box = [input_text] out_box = [gradio.Plot(label="Sentiment Score:"), gradio.Textbox(lines=4, label="Raw JSON Response:")] title = "Sentiment Analysis: Understanding the Emotional Tone of Text" desc = "Sentiment analysis is a powerful tool that can be used to gain insights into how people feel about the world around them." exp = [ ['I am feeling very bad today.'], ['I hate to swim early morning.'] ] arti= "DistilBERT is 27 times faster than OpenAI, making it the clear winner for speed-sensitive applications.\n\nWe did a comparision of OpenAI vs DestilBert model (which we are currently using in this space) by running 31 sentences in a loop and found DestilBert is 27 times faster than OpenAI." with gradio.Interface(fn=predict_sentiment, inputs=in_box, outputs=out_box, title=title, description=desc, examples=exp, article=arti) as demo: demo.launch(debug=True)