Spaces:
Runtime error
Runtime error
GirishKiran
commited on
Commit
·
63eb83a
1
Parent(s):
e29ed4c
Upload ./app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -201,9 +201,9 @@ class SentimentAnalyser(object):
|
|
201 |
utility._ph()
|
202 |
print(utility.fetch_system_info())
|
203 |
utility._ph()
|
204 |
-
print(utility.fetch_gpu_info())
|
205 |
utility._ph()
|
206 |
-
print(utility.fetch_host_ip())
|
207 |
utility._ph()
|
208 |
self._init_model()
|
209 |
utility._login_hface()
|
@@ -211,7 +211,7 @@ class SentimentAnalyser(object):
|
|
211 |
|
212 |
# initalise the model
|
213 |
def _init_model(self):
|
214 |
-
modelLink = "bhadresh-savani/distilbert-base-uncased-emotion"
|
215 |
self.tokenizer = AutoTokenizer.from_pretrained(modelLink)
|
216 |
self.model = AutoModelForSequenceClassification.from_pretrained(modelLink)
|
217 |
self.whisper_model = whisper.load_model("small")
|
@@ -260,7 +260,7 @@ def inference(audio):
|
|
260 |
return result.text
|
261 |
|
262 |
@add_method(SentimentAnalyser)
|
263 |
-
def predict_sentiment(input_text
|
264 |
df_out = _predict_sentiment(input_text)
|
265 |
max_column = df_out.loc[0].idxmax()
|
266 |
max_value = df_out.loc[0].max()
|
@@ -276,7 +276,7 @@ whisper_audio = gradio.Audio(label="Audio Input",
|
|
276 |
whisper_button = gradio.Button("Convert Audio to Text")
|
277 |
input_text = gradio.Textbox(lines=1, label="Text Input", placeholder="type text here")
|
278 |
|
279 |
-
in_box = [input_text
|
280 |
out_box = [gradio.Plot(label="Sentiment Score:"),
|
281 |
gradio.Textbox(lines=4, label="Raw JSON Response:")]
|
282 |
|
|
|
201 |
utility._ph()
|
202 |
print(utility.fetch_system_info())
|
203 |
utility._ph()
|
204 |
+
# print(utility.fetch_gpu_info())
|
205 |
utility._ph()
|
206 |
+
# print(utility.fetch_host_ip())
|
207 |
utility._ph()
|
208 |
self._init_model()
|
209 |
utility._login_hface()
|
|
|
211 |
|
212 |
# initalise the model
|
213 |
def _init_model(self):
|
214 |
+
modelLink = "bhadresh-savani/distilbert-base-uncased-emotion" #"SamLowe/roberta-base-go_emotions"
|
215 |
self.tokenizer = AutoTokenizer.from_pretrained(modelLink)
|
216 |
self.model = AutoModelForSequenceClassification.from_pretrained(modelLink)
|
217 |
self.whisper_model = whisper.load_model("small")
|
|
|
260 |
return result.text
|
261 |
|
262 |
@add_method(SentimentAnalyser)
|
263 |
+
def predict_sentiment(input_text):
|
264 |
df_out = _predict_sentiment(input_text)
|
265 |
max_column = df_out.loc[0].idxmax()
|
266 |
max_value = df_out.loc[0].max()
|
|
|
276 |
whisper_button = gradio.Button("Convert Audio to Text")
|
277 |
input_text = gradio.Textbox(lines=1, label="Text Input", placeholder="type text here")
|
278 |
|
279 |
+
in_box = [input_text]
|
280 |
out_box = [gradio.Plot(label="Sentiment Score:"),
|
281 |
gradio.Textbox(lines=4, label="Raw JSON Response:")]
|
282 |
|