Spaces:
Runtime error
Runtime error
GirishKiran
commited on
Commit
·
08172bd
1
Parent(s):
fa5774d
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -221,11 +221,12 @@ def _predict_sentiment(p):
|
|
221 |
scores = scipy.special.softmax(scores)
|
222 |
sentiment_map = ['Sadness', 'Joy', 'Love', 'Anger', 'Fear' , "Surprise"]
|
223 |
df_out = pandas.DataFrame([scores], columns=sentiment_map)
|
|
|
224 |
return df_out
|
225 |
|
226 |
@add_method(SentimentAnalyser)
|
227 |
def draw_bar_plot(df_data, title='Sentiment Analysis', xlabel='p string', ylabel='Emotion Score'):
|
228 |
-
pic = df_data.plot.bar(color=['#
|
229 |
title=title,
|
230 |
ylabel=ylabel,
|
231 |
xlabel=xlabel,
|
@@ -235,6 +236,7 @@ def draw_bar_plot(df_data, title='Sentiment Analysis', xlabel='p string', ylabel
|
|
235 |
@add_method(SentimentAnalyser)
|
236 |
def predict_sentiment(p):
|
237 |
df_out = _predict_sentiment(p)
|
|
|
238 |
max_column = df_out.loc[0].idxmax()
|
239 |
max_value = df_out.loc[0].max()
|
240 |
title = f'Sentiment Analysis: {max_column}: {round(max_value*100,1)}%'
|
@@ -242,16 +244,20 @@ def predict_sentiment(p):
|
|
242 |
pic = draw_bar_plot(df_out, title=title, xlabel=xlabel)
|
243 |
return pic.get_figure(), df_out.to_json()
|
244 |
|
245 |
-
|
246 |
import gradio
|
247 |
in_box = [gradio.Textbox(lines=1, label="Input", placeholder="type text here")]
|
248 |
out_box = [gradio.Plot(label="Sentiment Score:"),
|
249 |
gradio.Textbox(lines=4, label="Raw JSON Response:")]
|
250 |
title = "Sentiment Analysis: Understanding the Emotional Tone of Text"
|
251 |
-
desc = "Sentiment analysis is a powerful tool that can be used to gain insights into how people feel about the world around them."
|
|
|
|
|
|
|
|
|
252 |
|
253 |
gradio.Interface(fn=predict_sentiment,
|
254 |
inputs=in_box,
|
255 |
outputs=out_box,
|
256 |
title=title,
|
257 |
-
description=desc
|
|
|
|
221 |
scores = scipy.special.softmax(scores)
|
222 |
sentiment_map = ['Sadness', 'Joy', 'Love', 'Anger', 'Fear' , "Surprise"]
|
223 |
df_out = pandas.DataFrame([scores], columns=sentiment_map)
|
224 |
+
df_out = df_out[['Love' , 'Joy', 'Surprise' , 'Fear', 'Sadness', 'Anger']]
|
225 |
return df_out
|
226 |
|
227 |
@add_method(SentimentAnalyser)
|
228 |
def draw_bar_plot(df_data, title='Sentiment Analysis', xlabel='p string', ylabel='Emotion Score'):
|
229 |
+
pic = df_data.plot.bar(color=['#84c98c', '#747c0c', '#3fbfbf','#e89096', '#dc545c' , '#a31a0e'],
|
230 |
title=title,
|
231 |
ylabel=ylabel,
|
232 |
xlabel=xlabel,
|
|
|
236 |
@add_method(SentimentAnalyser)
|
237 |
def predict_sentiment(p):
|
238 |
df_out = _predict_sentiment(p)
|
239 |
+
print("sort : ", df_out.sort_values(['Love', 'Joy', 'Surprise', 'Fear', 'Sadness', 'Anger']))
|
240 |
max_column = df_out.loc[0].idxmax()
|
241 |
max_value = df_out.loc[0].max()
|
242 |
title = f'Sentiment Analysis: {max_column}: {round(max_value*100,1)}%'
|
|
|
244 |
pic = draw_bar_plot(df_out, title=title, xlabel=xlabel)
|
245 |
return pic.get_figure(), df_out.to_json()
|
246 |
|
|
|
247 |
import gradio
|
248 |
in_box = [gradio.Textbox(lines=1, label="Input", placeholder="type text here")]
|
249 |
out_box = [gradio.Plot(label="Sentiment Score:"),
|
250 |
gradio.Textbox(lines=4, label="Raw JSON Response:")]
|
251 |
title = "Sentiment Analysis: Understanding the Emotional Tone of Text"
|
252 |
+
desc = "Sentiment analysis is a powerful tool that can be used to gain insights into how people feel about the world around them."
|
253 |
+
exp = [
|
254 |
+
['I am feeling very bad today.'],
|
255 |
+
['I hate to swim early morning.']
|
256 |
+
]
|
257 |
|
258 |
gradio.Interface(fn=predict_sentiment,
|
259 |
inputs=in_box,
|
260 |
outputs=out_box,
|
261 |
title=title,
|
262 |
+
description=desc,
|
263 |
+
examples=exp).launch(debug=True)
|