import gradio as gr import torch from transformers import AutoFeatureExtractor, AutoTokenizer, VisionEncoderDecoderModel, GPT2Tokenizer, pipeline import os HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 device = 'cpu' auth_token = os.getenv("auth_token") #auth_token = os.environ.get("auth_token") max_length = 100 num_beams = 4 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def predict_step(image_paths, model): images = [] for image_path in image_paths: i_image = Image.open(image_path) if i_image.mode != "RGB": i_image = i_image.convert(mode="RGB") images.append(i_image) pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, **gen_kwargs) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds def predict_step_image(dataset_images, feature_extractor, model): results = [] for i in dataset_images: pixel_values = feature_extractor(images=i, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, **gen_kwargs) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] results.append(preds) return results def predict_step_single_image(image, tokenizer, feature_extractor, model): results=[] pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, **gen_kwargs) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] results.append(preds) return results def predict_step_pixel(dataset_pixel_values, model): results=[] for pv in dataset_pixel_values: pixel_values = pv.reshape([1,3,224,224]) pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, **gen_kwargs) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) results.append([pred.strip() for pred in preds][0]) return results """ image methods """ def load_image2txt_model(image_model_name): model = VisionEncoderDecoderModel.from_pretrained(image_model_name) feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/swin-large-patch4-window7-224", use_auth_token=auth_token) tokenizer = GPT2Tokenizer.from_pretrained("gpt2", use_auth_token=auth_token) tokenizer.pad_token = tokenizer.eos_token model = model.to(device) return tokenizer, feature_extractor, model def inference_image_pipe(image_input): image_model_name = "./checkpoint-21000" tokenizer, feature_extractor, image_model = load_image2txt_model(image_model_name) text = predict_step_single_image(image_input, tokenizer, feature_extractor, image_model)[0] return text with gr.Interface(fn=inference_image_pipe, inputs=gr.Image(height=256, width=256), outputs="text", examples=["3212210S4492629-1.png", "3216497S4499373-1.png"]) as demo: gr.Markdown("POC XRaySwinGen - Automatic Medical Report") if __name__ == "__main__": demo.launch()