Ghani-25 commited on
Commit
21382b1
·
1 Parent(s): 18ce986

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -0
app.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ import pickle
4
+ import gib_detect_train
5
+
6
+ model_data = pickle.load(open('gib_model.pki', 'rb'))
7
+
8
+
9
+ import math
10
+ import pickle
11
+
12
+ accepted_chars = 'abcdefghijklmnopqrstuvwxyz '
13
+
14
+ pos = dict([(char, idx) for idx, char in enumerate(accepted_chars)])
15
+
16
+
17
+ def normalize(line):
18
+ """ Return only the subset of chars from accepted_chars.
19
+ This helps keep the model relatively small by ignoring punctuation,
20
+ infrequently symbols, etc. """
21
+ return [c.lower() for c in line if c.lower() in accepted_chars]
22
+
23
+
24
+ def ngram(n, l):
25
+ """ Return all n grams from l after normalizing """
26
+ filtered = normalize(l)
27
+ for start in range(0, len(filtered) - n + 1):
28
+ yield ''.join(filtered[start:start + n])
29
+
30
+
31
+ def get_lines():
32
+ datasets = ['big.txt']
33
+ for filename in datasets:
34
+ with open(filename) as fp:
35
+ for line in fp:
36
+ yield line
37
+
38
+
39
+ def avg_transition_prob(l, log_prob_mat):
40
+ """ Return the average transition prob from l through log_prob_mat. """
41
+ log_prob = 0.0
42
+ transition_ct = 0
43
+ for a, b, c in ngram(3, l):
44
+ log_prob += log_prob_mat[pos[a]][pos[b]][pos[c]]
45
+ transition_ct += 1
46
+ # The exponentiation translates from log probs to probs.
47
+ return math.exp(log_prob / (transition_ct or 1))
48
+ # The exponentiation translates from log probs to probs.
49
+ return math.exp(log_prob / (transition_ct or 1))
50
+
51
+ while True:
52
+ l = st.text_area('enter a prospection message')
53
+ model_mat = model_data['mat']
54
+ threshold = model_data['thresh']
55
+ st.write(avg_transition_prob(l, model_mat) > threshold)