Chandranshu Jain
Update app.py
6513154 verified
from transformers import pipeline
import os
import gradio as gr
import torch
asr = pipeline(task="automatic-speech-recognition",
model="distil-whisper/distil-small.en")
translator = pipeline(task="translation",
model="facebook/nllb-200-distilled-600M",
torch_dtype=torch.bfloat16)
demo = gr.Blocks()
def transcribe_speech(filepath):
if filepath is None:
gr.Warning("No audio found, please retry.")
return ""
output = translator(asr(filepath)["text"],
src_lang="eng_Latn",
tgt_lang="hin_Deva")
return output
mic_transcribe = gr.Interface(
fn=transcribe_speech,
inputs=gr.Audio(sources="microphone",
type="filepath"),
outputs=gr.Textbox(label="Transcription",
lines=3),
allow_flagging="never")
file_transcribe = gr.Interface(
fn=transcribe_speech,
inputs=gr.Audio(sources="upload",
type="filepath"),
outputs=gr.Textbox(label="Transcription",
lines=3),
allow_flagging="never",
)
with demo:
gr.TabbedInterface(
[mic_transcribe,
file_transcribe],
["Transcribe Microphone",
"Transcribe Audio File"],
)
demo.launch(share=True)
demo.close()