ppsingh commited on
Commit
b3ec1fd
·
1 Parent(s): 0a54d57

updating the spaces log error

Browse files
app.py CHANGED
@@ -13,7 +13,6 @@ from auditqa.process_chunks import load_chunks, getconfig, get_local_qdrant
13
  from auditqa.retriever import get_context
14
  from auditqa.reader import nvidia_client, dedicated_endpoint
15
  from auditqa.utils import make_html_source, parse_output_llm_with_sources, save_logs, get_message_template
16
-
17
  from dotenv import load_dotenv
18
  load_dotenv()
19
 
@@ -35,7 +34,7 @@ scheduler = CommitScheduler(
35
  path_in_repo="audit_chatbot",
36
  token=SPACES_LOG )
37
 
38
- #### VECTOR STORE ####
39
  # reports contain the already created chunks from Markdown version of pdf reports
40
  # document processing was done using : https://github.com/axa-group/Parsr
41
  # We need to create the local vectorstore collection once using load_chunks
@@ -45,7 +44,7 @@ scheduler = CommitScheduler(
45
  # once the vectore embeddings are created we will use qdrant client to access these
46
  vectorstores = get_local_qdrant()
47
 
48
-
49
  def start_chat(query,history):
50
  history = history + [(query,None)]
51
  history = [tuple(x) for x in history]
@@ -59,13 +58,12 @@ async def chat(query,history,sources,reports,subtype,year):
59
  to yield a tuple of:(messages in gradio format/messages in langchain format, source documents)
60
  """
61
 
62
- logging.info(f">> NEW QUESTION : {query}")
63
- logging.info(f"history:{history}")
64
- #print(f"audience:{audience}")
65
- logging.info(f"sources:{sources}")
66
- logging.info(f"reports:{reports}")
67
- logging.info(f"subtype:{subtype}")
68
- logging.info(f"year:{year}")
69
  docs_html = ""
70
  output_query = ""
71
 
@@ -78,9 +76,11 @@ async def chat(query,history,sources,reports,subtype,year):
78
  context_retrieved_formatted = "||".join(doc.page_content for doc in context_retrieved)
79
  context_retrieved_lst = [doc.page_content for doc in context_retrieved]
80
 
81
- ##------------------- -------------Prompt--------------------------------------------------
82
  SYSTEM_PROMPT = """
83
- You are AuditQ&A, an AI Assistant created by Auditors and Data Scientist. You are given a question and extracted passages of the consolidated/departmental/thematic focus audit reports. Provide a clear and structured answer based on the passages/context provided and the guidelines.
 
 
84
  Guidelines:
85
  - Passeges are provided as comma separated list of strings
86
  - If the passages have useful facts or numbers, use them in your answer.
@@ -114,9 +114,9 @@ async def chat(query,history,sources,reports,subtype,year):
114
  if model_config.get('reader','TYPE') == 'NVIDIA':
115
  chat_model = nvidia_client()
116
  async def process_stream():
117
- nonlocal answer_yet
118
- # Without nonlocal, Python would create a new local variable answer_yet inside process_stream(), instead of modifying the one from the outer scope.
119
- #nonlocal answer_yet # Use the outer scope's answer_yet variable
120
  # Iterate over the streaming response chunks
121
  response = chat_model.chat_completion(
122
  model=model_config.get("reader","NVIDIA_MODEL"),
@@ -139,7 +139,8 @@ async def chat(query,history,sources,reports,subtype,year):
139
  else:
140
  chat_model = dedicated_endpoint()
141
  async def process_stream():
142
- # Without nonlocal, Python would create a new local variable answer_yet inside process_stream(), instead of modifying the one from the outer scope.
 
143
  nonlocal answer_yet # Use the outer scope's answer_yet variable
144
  # Iterate over the streaming response chunks
145
  async for chunk in chat_model.astream(messages):
@@ -171,14 +172,14 @@ async def chat(query,history,sources,reports,subtype,year):
171
  "answer": history[-1][1],
172
  "time": timestamp,
173
  }
174
- save_logs(logs)
175
  except Exception as e:
176
  logging.error(e)
177
 
178
 
179
 
180
 
181
- #### Gradio App ####
182
 
183
  # Set up Gradio Theme
184
  theme = gr.themes.Base(
 
13
  from auditqa.retriever import get_context
14
  from auditqa.reader import nvidia_client, dedicated_endpoint
15
  from auditqa.utils import make_html_source, parse_output_llm_with_sources, save_logs, get_message_template
 
16
  from dotenv import load_dotenv
17
  load_dotenv()
18
 
 
34
  path_in_repo="audit_chatbot",
35
  token=SPACES_LOG )
36
 
37
+ #####--------------- VECTOR STORE -------------------------------------------------
38
  # reports contain the already created chunks from Markdown version of pdf reports
39
  # document processing was done using : https://github.com/axa-group/Parsr
40
  # We need to create the local vectorstore collection once using load_chunks
 
44
  # once the vectore embeddings are created we will use qdrant client to access these
45
  vectorstores = get_local_qdrant()
46
 
47
+ #####---------------------CHAT-----------------------------------------------------
48
  def start_chat(query,history):
49
  history = history + [(query,None)]
50
  history = [tuple(x) for x in history]
 
58
  to yield a tuple of:(messages in gradio format/messages in langchain format, source documents)
59
  """
60
 
61
+ print(f">> NEW QUESTION : {query}")
62
+ print(f"history:{history}")
63
+ print(f"sources:{sources}")
64
+ print(f"reports:{reports}")
65
+ print(f"subtype:{subtype}")
66
+ print(f"year:{year}")
 
67
  docs_html = ""
68
  output_query = ""
69
 
 
76
  context_retrieved_formatted = "||".join(doc.page_content for doc in context_retrieved)
77
  context_retrieved_lst = [doc.page_content for doc in context_retrieved]
78
 
79
+ ##------------------- -------------Define Prompt-------------------------------------------
80
  SYSTEM_PROMPT = """
81
+ You are AuditQ&A, an AI Assistant created by Auditors and Data Scientist. \
82
+ You are given a question and extracted passages of the consolidated/departmental/thematic focus audit reports.\
83
+ Provide a clear and structured answer based on the passages/context provided and the guidelines.
84
  Guidelines:
85
  - Passeges are provided as comma separated list of strings
86
  - If the passages have useful facts or numbers, use them in your answer.
 
114
  if model_config.get('reader','TYPE') == 'NVIDIA':
115
  chat_model = nvidia_client()
116
  async def process_stream():
117
+ nonlocal answer_yet # Use the outer scope's answer_yet variable
118
+ # Without nonlocal, Python would create a new local variable answer_yet inside process_stream(),
119
+ # instead of modifying the one from the outer scope.
120
  # Iterate over the streaming response chunks
121
  response = chat_model.chat_completion(
122
  model=model_config.get("reader","NVIDIA_MODEL"),
 
139
  else:
140
  chat_model = dedicated_endpoint()
141
  async def process_stream():
142
+ # Without nonlocal, Python would create a new local variable answer_yet inside process_stream(),
143
+ # instead of modifying the one from the outer scope.
144
  nonlocal answer_yet # Use the outer scope's answer_yet variable
145
  # Iterate over the streaming response chunks
146
  async for chunk in chat_model.astream(messages):
 
172
  "answer": history[-1][1],
173
  "time": timestamp,
174
  }
175
+ save_logs(scheduler,JSON_DATASET_PATH,logs)
176
  except Exception as e:
177
  logging.error(e)
178
 
179
 
180
 
181
 
182
+ #####-------------------------- Gradio App--------------------------------------####
183
 
184
  # Set up Gradio Theme
185
  theme = gr.themes.Base(
auditqa/__pycache__/__init__.cpython-310.pyc CHANGED
Binary files a/auditqa/__pycache__/__init__.cpython-310.pyc and b/auditqa/__pycache__/__init__.cpython-310.pyc differ
 
auditqa/__pycache__/process_chunks.cpython-310.pyc CHANGED
Binary files a/auditqa/__pycache__/process_chunks.cpython-310.pyc and b/auditqa/__pycache__/process_chunks.cpython-310.pyc differ
 
auditqa/__pycache__/reader.cpython-310.pyc ADDED
Binary file (1.3 kB). View file
 
auditqa/__pycache__/reports.cpython-310.pyc CHANGED
Binary files a/auditqa/__pycache__/reports.cpython-310.pyc and b/auditqa/__pycache__/reports.cpython-310.pyc differ
 
auditqa/__pycache__/retriever.cpython-310.pyc ADDED
Binary file (1.88 kB). View file
 
auditqa/__pycache__/sample_questions.cpython-310.pyc CHANGED
Binary files a/auditqa/__pycache__/sample_questions.cpython-310.pyc and b/auditqa/__pycache__/sample_questions.cpython-310.pyc differ
 
auditqa/__pycache__/utils.cpython-310.pyc ADDED
Binary file (2.71 kB). View file
 
auditqa/process_chunks.py CHANGED
@@ -16,9 +16,13 @@ device = 'cuda' if cuda.is_available() else 'cpu'
16
  path_to_data = "./reports/"
17
 
18
 
19
- ##---------------------fucntions -------------------------------------------##
20
  def getconfig(configfile_path:str):
21
  """
 
 
 
 
22
  configfile_path: file path of .cfg file
23
  """
24
 
@@ -117,9 +121,7 @@ def get_local_qdrant():
117
  model_kwargs = {'device': device},
118
  encode_kwargs = {'normalize_embeddings': True},
119
  model_name=config.get('retriever','MODEL'))
120
- #list_ = ['Consolidated','District','Ministry','allreports']
121
- #for val in list_:
122
  client = QdrantClient(path="/data/local_qdrant")
123
- print(client.get_collections())
124
  qdrant_collections['allreports'] = Qdrant(client=client, collection_name='allreports', embeddings=embeddings, )
125
  return qdrant_collections
 
16
  path_to_data = "./reports/"
17
 
18
 
19
+ ##---------------------functions -------------------------------------------##
20
  def getconfig(configfile_path:str):
21
  """
22
+ Read the config file
23
+
24
+ Params
25
+ ----------------
26
  configfile_path: file path of .cfg file
27
  """
28
 
 
121
  model_kwargs = {'device': device},
122
  encode_kwargs = {'normalize_embeddings': True},
123
  model_name=config.get('retriever','MODEL'))
 
 
124
  client = QdrantClient(path="/data/local_qdrant")
125
+ print("Collections in local Qdrant:",client.get_collections())
126
  qdrant_collections['allreports'] = Qdrant(client=client, collection_name='allreports', embeddings=embeddings, )
127
  return qdrant_collections
auditqa/reader.py CHANGED
@@ -13,13 +13,17 @@ HF_token = os.environ["LLAMA_3_1"]
13
 
14
 
15
  def nvidia_client():
 
16
  client = InferenceClient(
17
  base_url=model_config.get('reader','NVIDIA_ENDPOINT'),
18
  api_key=NVIDIA_SERVER)
 
19
 
20
  return client
21
 
22
  def dedicated_endpoint():
 
 
23
  # Set up the streaming callback handler
24
  callback = StreamingStdOutCallbackHandler()
25
 
@@ -36,4 +40,5 @@ def dedicated_endpoint():
36
 
37
  # Create a ChatHuggingFace instance with the streaming-enabled endpoint
38
  chat_model = ChatHuggingFace(llm=llm_qa)
 
39
  return chat_model
 
13
 
14
 
15
  def nvidia_client():
16
+ """ returns the nvidia server client """
17
  client = InferenceClient(
18
  base_url=model_config.get('reader','NVIDIA_ENDPOINT'),
19
  api_key=NVIDIA_SERVER)
20
+ print("getting nvidia client")
21
 
22
  return client
23
 
24
  def dedicated_endpoint():
25
+ """ returns the dedicated server endpoint"""
26
+
27
  # Set up the streaming callback handler
28
  callback = StreamingStdOutCallbackHandler()
29
 
 
40
 
41
  # Create a ChatHuggingFace instance with the streaming-enabled endpoint
42
  chat_model = ChatHuggingFace(llm=llm_qa)
43
+ print("getting dedicated endpoint wrapped in ChathuggingFace ")
44
  return chat_model
auditqa/retriever.py CHANGED
@@ -3,14 +3,13 @@ from auditqa.process_chunks import getconfig
3
  from langchain.retrievers import ContextualCompressionRetriever
4
  from langchain.retrievers.document_compressors import CrossEncoderReranker
5
  from langchain_community.cross_encoders import HuggingFaceCrossEncoder
6
- import logging
7
 
8
  model_config = getconfig("model_params.cfg")
9
 
10
  def create_filter(reports:list = [],sources:str =None,
11
  subtype:str =None,year:str =None):
12
  if len(reports) == 0:
13
- print("defining filter for:{}:{}:{}".format(sources,subtype,year))
14
  filter=rest.Filter(
15
  must=[rest.FieldCondition(
16
  key="metadata.source",
 
3
  from langchain.retrievers import ContextualCompressionRetriever
4
  from langchain.retrievers.document_compressors import CrossEncoderReranker
5
  from langchain_community.cross_encoders import HuggingFaceCrossEncoder
 
6
 
7
  model_config = getconfig("model_params.cfg")
8
 
9
  def create_filter(reports:list = [],sources:str =None,
10
  subtype:str =None,year:str =None):
11
  if len(reports) == 0:
12
+ print("defining filter for sources:{},subtype:{},year:{}".format(sources,subtype,year))
13
  filter=rest.Filter(
14
  must=[rest.FieldCondition(
15
  key="metadata.source",
auditqa/utils.py CHANGED
@@ -14,7 +14,7 @@ def save_logs(scheduler, JSON_DATASET_PATH, logs) -> None:
14
  with JSON_DATASET_PATH.open("a") as f:
15
  json.dump(logs, f)
16
  f.write("\n")
17
- logging.info("logging done")
18
 
19
  def get_message_template(type, SYSTEM_PROMPT, USER_PROMPT):
20
  if type == 'NVIDIA':
 
14
  with JSON_DATASET_PATH.open("a") as f:
15
  json.dump(logs, f)
16
  f.write("\n")
17
+ print("logging done")
18
 
19
  def get_message_template(type, SYSTEM_PROMPT, USER_PROMPT):
20
  if type == 'NVIDIA':