File size: 4,949 Bytes
df6c67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import json
from dataclasses import asdict
from multiprocessing import shared_memory
from typing import Dict, List, Tuple

import numpy as np
from celery import Celery
from redis import ConnectionPool, Redis

import inference.enterprise.parallel.celeryconfig
from inference.core.entities.requests.inference import (
    InferenceRequest,
    request_from_type,
)
from inference.core.entities.responses.inference import InferenceResponse
from inference.core.env import REDIS_HOST, REDIS_PORT, STUB_CACHE_SIZE
from inference.core.managers.decorators.fixed_size_cache import WithFixedSizeCache
from inference.core.managers.decorators.locked_load import (
    LockedLoadModelManagerDecorator,
)
from inference.core.managers.stub_loader import StubLoaderManager
from inference.core.registries.roboflow import RoboflowModelRegistry
from inference.enterprise.parallel.utils import (
    SUCCESS_STATE,
    SharedMemoryMetadata,
    failure_handler,
    shm_manager,
)
from inference.models.utils import ROBOFLOW_MODEL_TYPES

pool = ConnectionPool(host=REDIS_HOST, port=REDIS_PORT, decode_responses=True)
app = Celery("tasks", broker=f"redis://{REDIS_HOST}:{REDIS_PORT}")
app.config_from_object(inference.enterprise.parallel.celeryconfig)
model_registry = RoboflowModelRegistry(ROBOFLOW_MODEL_TYPES)
model_manager = StubLoaderManager(model_registry)
model_manager = WithFixedSizeCache(
    LockedLoadModelManagerDecorator(model_manager), max_size=STUB_CACHE_SIZE
)


@app.task(queue="pre")
def preprocess(request: Dict):
    redis_client = Redis(connection_pool=pool)
    with failure_handler(redis_client, request["id"]):
        model_manager.add_model(request["model_id"], request["api_key"])
        model_type = model_manager.get_task_type(request["model_id"])
        request = request_from_type(model_type, request)
        image, preprocess_return_metadata = model_manager.preprocess(
            request.model_id, request
        )
        # multi image requests are split into single image requests upstream and rebatched later
        image = image[0]
        request.image.value = None  # avoid writing image again since it's in memory
        shm = shared_memory.SharedMemory(create=True, size=image.nbytes)
        with shm_manager(shm):
            shared = np.ndarray(image.shape, dtype=image.dtype, buffer=shm.buf)
            shared[:] = image[:]
            shm_metadata = SharedMemoryMetadata(shm.name, image.shape, image.dtype.name)
            queue_infer_task(
                redis_client, shm_metadata, request, preprocess_return_metadata
            )


@app.task(queue="post")
def postprocess(
    shm_info_list: Tuple[Dict], request: Dict, preproc_return_metadata: Dict
):
    redis_client = Redis(connection_pool=pool)
    shm_info_list: List[SharedMemoryMetadata] = [
        SharedMemoryMetadata(**metadata) for metadata in shm_info_list
    ]
    with failure_handler(redis_client, request["id"]):
        with shm_manager(
            *[shm_metadata.shm_name for shm_metadata in shm_info_list],
            unlink_on_success=True,
        ) as shms:
            model_manager.add_model(request["model_id"], request["api_key"])
            model_type = model_manager.get_task_type(request["model_id"])
            request = request_from_type(model_type, request)

            outputs = load_outputs(shm_info_list, shms)

            request_dict = dict(**request.dict())
            model_id = request_dict.pop("model_id")

            response = model_manager.postprocess(
                model_id,
                outputs,
                preproc_return_metadata,
                **request_dict,
                return_image_dims=True,
            )[0]

            write_response(redis_client, response, request.id)


def load_outputs(
    shm_info_list: List[SharedMemoryMetadata], shms: List[shared_memory.SharedMemory]
) -> Tuple[np.ndarray, ...]:
    outputs = []
    for args, shm in zip(shm_info_list, shms):
        output = np.ndarray(
            [1] + args.array_shape, dtype=args.array_dtype, buffer=shm.buf
        )
        outputs.append(output)
    return tuple(outputs)


def queue_infer_task(
    redis: Redis,
    shm_metadata: SharedMemoryMetadata,
    request: InferenceRequest,
    preprocess_return_metadata: Dict,
):
    return_vals = {
        "shm_metadata": asdict(shm_metadata),
        "request": request.dict(),
        "preprocess_metadata": preprocess_return_metadata,
    }
    return_vals = json.dumps(return_vals)
    pipe = redis.pipeline()
    pipe.zadd(f"infer:{request.model_id}", {return_vals: request.start})
    pipe.hincrby(f"requests", request.model_id, 1)
    pipe.execute()


def write_response(redis: Redis, response: InferenceResponse, request_id: str):
    response = response.dict(exclude_none=True, by_alias=True)
    redis.publish(
        f"results",
        json.dumps(
            {"status": SUCCESS_STATE, "task_id": request_id, "payload": response}
        ),
    )