File size: 7,761 Bytes
df6c67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import logging
import time
from asyncio import Queue as AioQueue
from dataclasses import asdict
from multiprocessing import shared_memory
from queue import Queue
from threading import Thread
from typing import Dict, List, Tuple

import numpy as np
import orjson
from redis import ConnectionPool, Redis

from inference.core.entities.requests.inference import (
    InferenceRequest,
    request_from_type,
)
from inference.core.env import MAX_ACTIVE_MODELS, MAX_BATCH_SIZE, REDIS_HOST, REDIS_PORT
from inference.core.managers.base import ModelManager
from inference.core.managers.decorators.fixed_size_cache import WithFixedSizeCache
from inference.core.models.roboflow import RoboflowInferenceModel
from inference.core.registries.roboflow import RoboflowModelRegistry
from inference.enterprise.parallel.tasks import postprocess
from inference.enterprise.parallel.utils import (
    SharedMemoryMetadata,
    failure_handler,
    shm_manager,
)

logging.basicConfig(level=logging.WARNING)
logger = logging.getLogger()

from inference.models.utils import ROBOFLOW_MODEL_TYPES

BATCH_SIZE = MAX_BATCH_SIZE
if BATCH_SIZE == float("inf"):
    BATCH_SIZE = 32
AGE_TRADEOFF_SECONDS_FACTOR = 30


class InferServer:
    def __init__(self, redis: Redis) -> None:
        self.redis = redis
        model_registry = RoboflowModelRegistry(ROBOFLOW_MODEL_TYPES)
        model_manager = ModelManager(model_registry)
        self.model_manager = WithFixedSizeCache(
            model_manager, max_size=MAX_ACTIVE_MODELS
        )
        self.running = True
        self.response_queue = Queue()
        self.write_thread = Thread(target=self.write_responses)
        self.write_thread.start()
        self.batch_queue = Queue(maxsize=1)
        self.infer_thread = Thread(target=self.infer)
        self.infer_thread.start()

    def write_responses(self):
        while True:
            try:
                response = self.response_queue.get()
                write_infer_arrays_and_launch_postprocess(*response)
            except Exception as error:
                logger.warning(
                    f"Encountered error while writiing response:\n" + str(error)
                )

    def infer_loop(self):
        while self.running:
            try:
                model_names = get_requested_model_names(self.redis)
                if not model_names:
                    time.sleep(0.001)
                    continue
                self.get_batch(model_names)
            except Exception as error:
                logger.warning("Encountered error in infer loop:\n" + str(error))
                continue

    def infer(self):
        while True:
            model_id, images, batch, preproc_return_metadatas = self.batch_queue.get()
            outputs = self.model_manager.predict(model_id, images)
            for output, b, metadata in zip(
                zip(*outputs), batch, preproc_return_metadatas
            ):
                self.response_queue.put_nowait((output, b["request"], metadata))

    def get_batch(self, model_names):
        start = time.perf_counter()
        batch, model_id = get_batch(self.redis, model_names)
        logger.info(f"Inferring: model<{model_id}> batch_size<{len(batch)}>")
        with failure_handler(self.redis, *[b["request"]["id"] for b in batch]):
            self.model_manager.add_model(model_id, batch[0]["request"]["api_key"])
            model_type = self.model_manager.get_task_type(model_id)
            for b in batch:
                request = request_from_type(model_type, b["request"])
                b["request"] = request
                b["shm_metadata"] = SharedMemoryMetadata(**b["shm_metadata"])

            metadata_processed = time.perf_counter()
            logger.info(
                f"Took {(metadata_processed - start):3f} seconds to process metadata"
            )
            with shm_manager(
                *[b["shm_metadata"].shm_name for b in batch], unlink_on_success=True
            ) as shms:
                images, preproc_return_metadatas = load_batch(batch, shms)
                loaded = time.perf_counter()
                logger.info(
                    f"Took {(loaded - metadata_processed):3f} seconds to load batch"
                )
                self.batch_queue.put(
                    (model_id, images, batch, preproc_return_metadatas)
                )


def get_requested_model_names(redis: Redis) -> List[str]:
    request_counts = redis.hgetall("requests")
    model_names = [
        model_name for model_name, count in request_counts.items() if int(count) > 0
    ]
    return model_names


def get_batch(redis: Redis, model_names: List[str]) -> Tuple[List[Dict], str]:
    """
    Run a heuristic to select the best batch to infer on
    redis[Redis]: redis client
    model_names[List[str]]: list of models with nonzero number of requests
    returns:
        Tuple[List[Dict], str]
        List[Dict] represents a batch of request dicts
        str is the model id
    """
    batch_sizes = [
        RoboflowInferenceModel.model_metadata_from_memcache_endpoint(m)["batch_size"]
        for m in model_names
    ]
    batch_sizes = [b if not isinstance(b, str) else BATCH_SIZE for b in batch_sizes]
    batches = [
        redis.zrange(f"infer:{m}", 0, b - 1, withscores=True)
        for m, b in zip(model_names, batch_sizes)
    ]
    model_index = select_best_inference_batch(batches, batch_sizes)
    batch = batches[model_index]
    selected_model = model_names[model_index]
    redis.zrem(f"infer:{selected_model}", *[b[0] for b in batch])
    redis.hincrby(f"requests", selected_model, -len(batch))
    batch = [orjson.loads(b[0]) for b in batch]
    return batch, selected_model


def select_best_inference_batch(batches, batch_sizes):
    now = time.time()
    average_ages = [np.mean([float(b[1]) - now for b in batch]) for batch in batches]
    lengths = [
        len(batch) / batch_size for batch, batch_size in zip(batches, batch_sizes)
    ]
    fitnesses = [
        age / AGE_TRADEOFF_SECONDS_FACTOR + length
        for age, length in zip(average_ages, lengths)
    ]
    model_index = fitnesses.index(max(fitnesses))
    return model_index


def load_batch(
    batch: List[Dict[str, str]], shms: List[shared_memory.SharedMemory]
) -> Tuple[List[np.ndarray], List[Dict]]:
    images = []
    preproc_return_metadatas = []
    for b, shm in zip(batch, shms):
        shm_metadata: SharedMemoryMetadata = b["shm_metadata"]
        image = np.ndarray(
            shm_metadata.array_shape, dtype=shm_metadata.array_dtype, buffer=shm.buf
        ).copy()
        images.append(image)
        preproc_return_metadatas.append(b["preprocess_metadata"])
    return images, preproc_return_metadatas


def write_infer_arrays_and_launch_postprocess(
    arrs: Tuple[np.ndarray, ...],
    request: InferenceRequest,
    preproc_return_metadata: Dict,
):
    """Write inference results to shared memory and launch the postprocessing task"""
    shms = [shared_memory.SharedMemory(create=True, size=arr.nbytes) for arr in arrs]
    with shm_manager(*shms):
        shm_metadatas = []
        for arr, shm in zip(arrs, shms):
            shared = np.ndarray(arr.shape, dtype=arr.dtype, buffer=shm.buf)
            shared[:] = arr[:]
            shm_metadata = SharedMemoryMetadata(
                shm_name=shm.name, array_shape=arr.shape, array_dtype=arr.dtype.name
            )
            shm_metadatas.append(asdict(shm_metadata))

        postprocess.s(
            tuple(shm_metadatas), request.dict(), preproc_return_metadata
        ).delay()


if __name__ == "__main__":
    pool = ConnectionPool(host=REDIS_HOST, port=REDIS_PORT, decode_responses=True)
    redis = Redis(connection_pool=pool)
    InferServer(redis).infer_loop()