Spaces:
Runtime error
Runtime error
# https://huggingface.co/spaces/FlavioBF/AI_in_production_PRJs | |
# ================================================================ | |
# | |
# import | |
# | |
# ================================================================ | |
#PDF PROCESSING | |
# To read the PDF | |
import PyPDF2 | |
# To analyze the PDF layout and extract text | |
from pdfminer.high_level import extract_pages, extract_text | |
from pdfminer.layout import LTTextContainer, LTChar, LTRect, LTFigure | |
# To extract text from tables in PDF | |
import pdfplumber | |
# To extract the images from the PDFs | |
from PIL import Image | |
from pdf2image import convert_from_path | |
# To perform OCR to extract text from images | |
import pytesseract | |
# To remove the additional created files | |
import os | |
#SUMMARIZATION AND AUDIO PROCESSING | |
import torch | |
import numpy as np | |
import scipy | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from transformers import pipeline, AutoProcessor, AutoModel | |
from transformers import pipeline | |
# ----------------------------------------------------------------------------- | |
# Create a function to extract text | |
def text_extraction(element): | |
# Extracting the text from the in-line text element | |
line_text = element.get_text() | |
# Find the formats of the text | |
# Initialize the list with all the formats that appeared in the line of text | |
line_formats = [] | |
for text_line in element: | |
if isinstance(text_line, LTTextContainer): | |
# Iterating through each character in the line of text | |
for character in text_line: | |
if isinstance(character, LTChar): | |
# Append the font name of the character | |
line_formats.append(character.fontname) | |
# Append the font size of the character | |
line_formats.append(character.size) | |
# Find the unique font sizes and names in the line | |
format_per_line = list(set(line_formats)) | |
# Return a tuple with the text in each line along with its format | |
return (line_text, format_per_line) | |
# Create a function to crop the image elements from PDFs | |
def crop_image(element, pageObj): | |
# Get the coordinates to crop the image from the PDF | |
[image_left, image_top, image_right, image_bottom] = [element.x0,element.y0,element.x1,element.y1] | |
# Crop the page using coordinates (left, bottom, right, top) | |
pageObj.mediabox.lower_left = (image_left, image_bottom) | |
pageObj.mediabox.upper_right = (image_right, image_top) | |
# Save the cropped page to a new PDF | |
cropped_pdf_writer = PyPDF2.PdfWriter() | |
cropped_pdf_writer.add_page(pageObj) | |
# Save the cropped PDF to a new file | |
with open('cropped_image.pdf', 'wb') as cropped_pdf_file: | |
cropped_pdf_writer.write(cropped_pdf_file) | |
# Create a function to convert the PDF to images | |
def convert_to_images(input_file,): | |
images = convert_from_path(input_file) | |
image = images[0] | |
output_file = "PDF_image.png" | |
image.save(output_file, "PNG") | |
# Create a function to read text from images | |
def image_to_text(image_path): | |
# Read the image | |
img = Image.open(image_path) | |
# Extract the text from the image | |
text = pytesseract.image_to_string(img) | |
return text | |
# Extracting tables from the page | |
def extract_table(pdf_path, page_num, table_num): | |
# Open the pdf file | |
pdf = pdfplumber.open(pdf_path) | |
# Find the examined page | |
table_page = pdf.pages[page_num] | |
# Extract the appropriate table | |
table = table_page.extract_tables()[table_num] | |
return table | |
# Convert table into the appropriate format | |
def table_converter(table): | |
table_string = '' | |
# Iterate through each row of the table | |
for row_num in range(len(table)): | |
row = table[row_num] | |
# Remove the line breaker from the wrapped texts | |
cleaned_row = [item.replace('\n', ' ') if item is not None and '\n' in item else 'None' if item is None else item for item in row] | |
# Convert the table into a string | |
table_string+=('|'+'|'.join(cleaned_row)+'|'+'\n') | |
# Removing the last line break | |
table_string = table_string[:-1] | |
return table_string | |
# Extracting tables from the page | |
def extract_table(pdf_path, page_num, table_num): | |
# Open the pdf file | |
pdf = pdfplumber.open(pdf_path) | |
# Find the examined page | |
table_page = pdf.pages[page_num] | |
# Extract the appropriate table | |
table = table_page.extract_tables()[table_num] | |
return table | |
# Convert table into the appropriate format | |
def table_converter(table): | |
table_string = '' | |
# Iterate through each row of the table | |
for row_num in range(len(table)): | |
row = table[row_num] | |
# Remove the line breaker from the wrapped texts | |
cleaned_row = [item.replace('\n', ' ') if item is not None and '\n' in item else 'None' if item is None else item for item in row] | |
# Convert the table into a string | |
table_string+=('|'+'|'.join(cleaned_row)+'|'+'\n') | |
# Removing the last line break | |
table_string = table_string[:-1] | |
return table_string | |
# .............................................................. | |
def read_pdf(pdf_path): | |
# create a PDF file object | |
pdfFileObj = open(pdf_path, 'rb') | |
# create a PDF reader object | |
pdfReaded = PyPDF2.PdfReader(pdfFileObj) | |
# Create the dictionary to extract text from each image | |
text_per_page = {} | |
# We extract the pages from the PDF | |
for pagenum, page in enumerate(extract_pages(pdf_path)): | |
print("Elaborating Page_" +str(pagenum)) | |
# Initialize the variables needed for the text extraction from the page | |
pageObj = pdfReaded.pages[pagenum] | |
page_text = [] | |
line_format = [] | |
text_from_images = [] | |
text_from_tables = [] | |
page_content = [] | |
# Initialize the number of the examined tables | |
table_num = 0 | |
first_element= True | |
table_extraction_flag= False | |
# Open the pdf file | |
pdf = pdfplumber.open(pdf_path) | |
# Find the examined page | |
page_tables = pdf.pages[pagenum] | |
# Find the number of tables on the page | |
tables = page_tables.find_tables() | |
# Find all the elements | |
page_elements = [(element.y1, element) for element in page._objs] | |
# Sort all the elements as they appear in the page | |
page_elements.sort(key=lambda a: a[0], reverse=True) | |
# Find the elements that composed a page | |
for i,component in enumerate(page_elements): | |
# Extract the position of the top side of the element in the PDF | |
pos= component[0] | |
# Extract the element of the page layout | |
element = component[1] | |
# Check if the element is a text element | |
if isinstance(element, LTTextContainer): | |
# Check if the text appeared in a table | |
if table_extraction_flag == False: | |
# Use the function to extract the text and format for each text element | |
(line_text, format_per_line) = text_extraction(element) | |
# Append the text of each line to the page text | |
page_text.append(line_text) | |
# Append the format for each line containing text | |
line_format.append(format_per_line) | |
page_content.append(line_text) | |
else: | |
# Omit the text that appeared in a table | |
pass | |
# Check the elements for images | |
if isinstance(element, LTFigure): | |
# Crop the image from the PDF | |
crop_image(element, pageObj) | |
# Convert the cropped pdf to an image | |
convert_to_images('cropped_image.pdf') | |
# Extract the text from the image | |
image_text = image_to_text('PDF_image.png') | |
text_from_images.append(image_text) | |
page_content.append(image_text) | |
# Add a placeholder in the text and format lists | |
page_text.append('image') | |
line_format.append('image') | |
# Check the elements for tables | |
if isinstance(element, LTRect): | |
# If the first rectangular element | |
if first_element == True and (table_num+1) <= len(tables): | |
# Find the bounding box of the table | |
lower_side = page.bbox[3] - tables[table_num].bbox[3] | |
upper_side = element.y1 | |
# Extract the information from the table | |
table = extract_table(pdf_path, pagenum, table_num) | |
# Convert the table information in structured string format | |
table_string = table_converter(table) | |
# Append the table string into a list | |
text_from_tables.append(table_string) | |
page_content.append(table_string) | |
# Set the flag as True to avoid the content again | |
table_extraction_flag = True | |
# Make it another element | |
first_element = False | |
# Add a placeholder in the text and format lists | |
page_text.append('table') | |
line_format.append('table') | |
# Check if we already extracted the tables from the page | |
if element.y0 >= lower_side and element.y1 <= upper_side: | |
pass | |
elif not isinstance(page_elements[i+1][1], LTRect): | |
table_extraction_flag = False | |
first_element = True | |
table_num+=1 | |
# Create the key of the dictionary | |
dctkey = 'Page_'+str(pagenum) | |
# Add the list of list as the value of the page key | |
text_per_page[dctkey]= [page_text, line_format, text_from_images,text_from_tables, page_content] | |
# Closing the pdf file object | |
pdfFileObj.close() | |
# Deleting the additional files created | |
# os.remove('cropped_image.pdf') | |
# os.remove('PDF_image.png') | |
return text_per_page | |
# mount drive location | |
#from google.colab import drive | |
#drive.mount('/content/drive') | |
#pdf_path = 'C:/Users/Cristina/Documents/MDS/TERM1_AppliedArtificialIntelligence/Assesment3/NIPS-2015-hidden-technical-debt-in-machine-learning-systems-Paper.pdf' | |
#pdf_path="C:/Users/Cristina/Documents/MDS/TERM1_AppliedArtificialIntelligence/Assesment3/hidden-technical-debt-in-machine-learning-systems-Paper.pdf" | |
#pdf_path2="C:/Users/Cristina/Documents/MDS/TERM1_AppliedArtificialIntelligence/Assesment3/1812_05944.pdf" | |
pdf_path=os.path.join(os.path.abspath(""), "hidden-technical-debt-in-machine-learning-systems-Paper.pdf") | |
pdf_path2=os.path.join(os.path.abspath(""), "1812_05944.pdf") | |
# ======================================= | |
# | |
# ======================================= | |
def sentence_to_audio(fileobj): | |
# text mining from pdf | |
text_per_page = read_pdf(fileobj.name) | |
text_per_page.keys() | |
page_1 = text_per_page['Page_0'] | |
# picking up the abstract from the first page content | |
flag=False | |
abstract_sect="" | |
for i in range(len(page_1)): | |
if page_1[0][i].strip()=="Abstract": | |
flag=True | |
if page_1[0][i].strip()=="1 Introduction": | |
flag = False | |
if flag: | |
# abstract_sect contains the Abstract section content | |
abstract_sect+=page_1[0][i] | |
# abstract summarization | |
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY") | |
summary=(summarizer(abstract_sect)) | |
summary_text=summary[0].get("summary_text") | |
# Sentence 2 Speech | |
#txt1="Hello ->> " + fileobj.name + " <<!" | |
#txt1="Hello" | |
#txt2="ciccio" | |
# Sentence 2 Speech | |
s_to_s = pipeline("text-to-speech", model="suno/bark-small") | |
generated_audio=s_to_s(summary_text,forward_params={"do_sample": True}) | |
scipy.io.wavfile.write("s_2_s.wav", rate=generated_audio["sampling_rate"], data=generated_audio["audio"].T) | |
return "s_2_s.wav",summary_text | |
# =========================================================== | |
#summary_txt="It is dangerous to think of machine learning as a free-to-use toolkit, as it is common to incur ongoing maintenance costs in real-world ML systems" | |
pdf_path=os.path.join(os.path.abspath(""), "hidden-technical-debt-in-machine-learning-systems-Paper.pdf") | |
#pdf_path2=os.path.join(os.path.abspath(""), "1812_05944.pdf") | |
pdf_path2=os.path.join(os.path.abspath(""), "Article_4_ExperimentalEvidence_on_the_Productivity_Effects_ of_Generative_ Artificial_Intelligence.pdf") | |
#iface = gr.Interface(fn=sentence_to_audio, inputs="file", outputs=["audio",gr.Textbox(lines=4,label="one sentence summ.")],title="SINGLE SENTENCE SUMMARY TO AUDIO CONVERSIONE (upload only pdf files with Abstract section)") | |
#iface.launch(share=True) | |
demo = gr.Interface(fn=sentence_to_audio, inputs="file", outputs=["audio",gr.Textbox(lines=4,label="one sentence summ.")],examples=[pdf_path,pdf_path2],title="SINGLE SENTENCE SUMMARY TO AUDIO CONVERSION - upload only pdf files with Abstract section -") | |
demo.launch(share=True) | |