File size: 9,649 Bytes
32f7b3e
ab218e2
2bc3f5c
 
ab218e2
 
32f7b3e
ab218e2
2bc3f5c
ab218e2
2bc3f5c
32f7b3e
 
 
 
 
 
 
 
 
 
 
 
2bc3f5c
 
 
 
 
ab218e2
 
32f7b3e
 
 
 
 
 
 
 
 
 
 
 
 
2bc3f5c
32f7b3e
 
2bc3f5c
 
32f7b3e
 
da23173
 
 
 
 
 
 
 
 
 
 
 
 
 
ab218e2
 
 
 
 
32f7b3e
ab218e2
da23173
ab218e2
 
 
 
32f7b3e
ab218e2
 
32f7b3e
 
 
2bc3f5c
 
32f7b3e
2bc3f5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f7b3e
 
 
 
 
2bc3f5c
 
 
 
 
 
 
 
 
 
ab218e2
2bc3f5c
ab218e2
2bc3f5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab218e2
32f7b3e
ab218e2
 
 
 
 
 
da23173
ab218e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da23173
 
ab218e2
 
 
 
 
 
 
 
 
 
da23173
ab218e2
 
 
 
 
2bc3f5c
 
 
ab218e2
da23173
32f7b3e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import sys
import os
import logging as log
from typing import Generator

import gradio as gr
from gradio.themes.utils import sizes
from text_generation import Client
from src.request import StarCoderRequest, StarCoderRequestConfig

from src.utils import (
    get_file_as_string,
    get_sections,
    get_url_from_env_or_default_path,
    preview
)
from constants import (
    FIM_MIDDLE,
    FIM_PREFIX,
    FIM_SUFFIX,
    END_OF_TEXT,
    MIN_TEMPERATURE,
)
from settings import (
    DEFAULT_PORT,
    DEFAULT_STARCODER_API_PATH,
    DEFAULT_STARCODER_BASE_API_PATH,
)

HF_TOKEN = os.environ.get("HF_TOKEN", None)
# Gracefully exit the app if the HF_TOKEN is not set,
# printing to system `errout` the error (instead of raising an exception)
# and the expected behavior
if not HF_TOKEN:
    ERR_MSG = """
        Please set the HF_TOKEN environment variable with your Hugging Face API token.
        You can get one by signing up at https://huggingface.co/join and then visiting
        https://huggingface.co/settings/tokens."""
    print(ERR_MSG, file=sys.stderr)
    # gr.errors.GradioError(ERR_MSG)
    # gr.close_all(verbose=False)
    sys.exit(1)

API_URL_STAR = get_url_from_env_or_default_path("STARCODER_API", DEFAULT_STARCODER_API_PATH)
API_URL_BASE = get_url_from_env_or_default_path("STARCODER_BASE_API", DEFAULT_STARCODER_BASE_API_PATH)

preview("StarCoder Model URL", API_URL_STAR)
preview("StarCoderBase Model URL", API_URL_BASE)
preview("HF Token", HF_TOKEN, ofuscate=True)

_styles = get_file_as_string("styles.css")
_script = get_file_as_string("community-btn.js")
_sharing_icon_svg = get_file_as_string("community-icon.svg")
_loading_icon_svg = get_file_as_string("loading-icon.svg")

# Loads the whole content of the ./README.md file
# slicing/unpacking its different sections into their proper variables
readme_file_content = get_file_as_string("README.md", path='./')
(
    manifest,
    description,
    disclaimer,
    formats,
) = get_sections(readme_file_content, "---", up_to=4)

theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=sizes.radius_sm,
    font=[
        gr.themes.GoogleFont("IBM Plex Sans", [400, 600]),
        "ui-sans-serif",
        "system-ui",
        "sans-serif",
    ],
    text_size=sizes.text_lg,
)

HEADERS = {
    "Authorization": f"Bearer {HF_TOKEN}",
}
client_star = Client(API_URL_STAR, headers=HEADERS)
client_base = Client(API_URL_BASE, headers=HEADERS)

def get_tokens_collector(request: StarCoderRequest) -> Generator[str, None, None]:

    model_client = client_star if request.settings.version == "StarCoder" else client_base
    stream = model_client.generate_stream(request.prompt, **request.settings.kwargs())
    for response in stream:
        # print(response.token.id, response.token.text)
        # if token.text != END_OF_TEXT:
        if response.token.id != 0:
            yield response.token.text

def get_tokens_accumulator(request: StarCoderRequest) -> Generator[str, None, None]:
    # start with the prefix (if in fim_mode)
    output = request.prefix if request.fim_mode else request.prompt
    for token in get_tokens_collector(request=request):
        output += token
        yield output
    # after the last token, append the suffix (if in fim_mode)
    if request.fim_mode:
        output += request.suffix
        yield output
    # Append an extra line at the end
    yield output + '\n'

def get_tokens_linker(request: StarCoderRequest) -> str:
    return "".join(list(get_tokens_collector(request)))

def generate(
        prompt: str,
        temperature = 0.9,
        max_new_tokens = 256,
        top_p = 0.95,
        repetition_penalty = 1.0,
        version = "StarCoder",
    ) -> Generator[str, None, None]:
    request = StarCoderRequest(
        prompt=prompt,
        settings=StarCoderRequestConfig(
            version=version,
            temperature=temperature,
            max_new_tokens=max_new_tokens,
            top_p=top_p,
            repetition_penalty=repetition_penalty,
        )
    )
    yield from get_tokens_accumulator(request)

def process_example(
        prompt: str,
        temperature = 0.9,
        max_new_tokens = 256,
        top_p = 0.95,
        repetition_penalty = 1.0,
        version = "StarCoder",
    ) -> Generator[str, None, None]:
    request = StarCoderRequest(
        prompt=prompt,
        settings=StarCoderRequestConfig(
            version=version,
            temperature=temperature,
            max_new_tokens=max_new_tokens,
            top_p=top_p,
            repetition_penalty=repetition_penalty,
        )
    )
    yield from get_tokens_linker(request)

# todo: move it into the README too
examples = [
    "X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1)\n\n# Train a logistic regression model, predict the labels on the test set and compute the accuracy score",
    "// Returns every other value in the array as a new array.\nfunction everyOther(arr) {",
    "def alternating(list1, list2):\n   results = []\n   for i in range(min(len(list1), len(list2))):\n       results.append(list1[i])\n       results.append(list2[i])\n   if len(list1) > len(list2):\n       <FILL_HERE>\n   else:\n       results.extend(list2[i+1:])\n   return results",
]

with gr.Blocks(theme=theme, analytics_enabled=False, css=_styles) as demo:
    with gr.Column():
        gr.Markdown(description)
        with gr.Row():
            with gr.Column():
                instruction = gr.Textbox(
                    placeholder="Enter your code here",
                    label="Code",
                    elem_id="q-input",
                )
                submit = gr.Button("Generate", variant="primary")
                output = gr.Code(elem_id="q-output", lines=30)
                with gr.Row():
                    with gr.Column():
                        with gr.Accordion("Advanced settings", open=False):
                            with gr.Row():
                                column_1, column_2 = gr.Column(), gr.Column()
                                with column_1:
                                    temperature = gr.Slider(
                                        label="Temperature",
                                        value=0.2,
                                        minimum=0.0,
                                        maximum=1.0,
                                        step=0.05,
                                        interactive=True,
                                        info="Higher values produce more diverse outputs",
                                    )
                                    max_new_tokens = gr.Slider(
                                        label="Max new tokens",
                                        value=256,
                                        minimum=0,
                                        maximum=8192,
                                        step=64,
                                        interactive=True,
                                        info="The maximum numbers of new tokens",
                                    )
                                with column_2:
                                    top_p = gr.Slider(
                                        label="Top-p (nucleus sampling)",
                                        value=0.90,
                                        minimum=0.0,
                                        maximum=1,
                                        step=0.05,
                                        interactive=True,
                                        info="Higher values sample more low-probability tokens",
                                    )
                                    repetition_penalty = gr.Slider(
                                        label="Repetition penalty",
                                        value=1.2,
                                        minimum=1.0,
                                        maximum=2.0,
                                        step=0.05,
                                        interactive=True,
                                        info="Penalize repeated tokens",
                                    )
                    with gr.Column():
                        version = gr.Dropdown(
                                    ["StarCoderBase", "StarCoder"],
                                    value="StarCoder",
                                    label="Version",
                                    info="",
                                    )
                gr.Markdown(disclaimer)
                with gr.Group(elem_id="share-btn-container"):
                    community_icon = gr.HTML(_sharing_icon_svg, visible=True)
                    loading_icon = gr.HTML(_loading_icon_svg, visible=True)
                    share_button = gr.Button(
                        "Share to community", elem_id="share-btn", visible=True
                    )
                gr.Examples(
                    examples=examples,
                    inputs=[instruction],
                    cache_examples=False,
                    fn=process_example,
                    outputs=[output],
                )
                gr.Markdown(formats)

    submit.click(
        generate,
        inputs=[instruction, temperature, max_new_tokens, top_p, repetition_penalty, version],
        outputs=[output],
        # preprocess=False,
        max_batch_size=8,
        show_progress=True
    )
    share_button.click(None, [], [], _js=_script)

demo.queue(concurrency_count=16).launch(debug=True, server_port=DEFAULT_PORT)