File size: 8,923 Bytes
32f7b3e
ab218e2
 
 
32f7b3e
ab218e2
 
32f7b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab218e2
 
32f7b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab218e2
 
 
32f7b3e
 
 
 
 
 
 
ab218e2
32f7b3e
 
ab218e2
32f7b3e
 
ab218e2
32f7b3e
ab218e2
 
 
 
 
32f7b3e
ab218e2
32f7b3e
ab218e2
 
 
 
32f7b3e
ab218e2
 
32f7b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab218e2
 
 
32f7b3e
 
 
 
 
 
ab218e2
 
32f7b3e
ab218e2
 
32f7b3e
 
 
ab218e2
 
32f7b3e
 
 
ab218e2
32f7b3e
ab218e2
 
32f7b3e
ab218e2
 
 
 
 
 
32f7b3e
 
ab218e2
 
 
32f7b3e
ab218e2
 
 
 
 
 
 
 
 
 
 
 
32f7b3e
ab218e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f7b3e
 
ab218e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f7b3e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import sys
import os

import gradio as gr
from gradio.themes.utils import sizes
from text_generation import Client

# todo: remove and replace by the actual js file instead
from share_btn import (share_js)
from utils import (
    get_file_as_string,
    get_sections,
    get_url_from_env_or_default_path,
    preview
)
from constants import (
    DEFAULT_STARCODER_API_PATH,
    DEFAULT_STARCODER_BASE_API_PATH,
    FIM_MIDDLE,
    FIM_PREFIX,
    FIM_SUFFIX,
    END_OF_TEXT,
    MIN_TEMPERATURE,
)

HF_TOKEN = os.environ.get("HF_TOKEN", None)
# Gracefully exit the app if the HF_TOKEN is not set,
# printing to system `errout` the error (instead of raising an exception)
# and the expected behavior
if not HF_TOKEN:
    ERR_MSG = """
        Please set the HF_TOKEN environment variable with your Hugging Face API token.
        You can get one by signing up at https://huggingface.co/join and then visiting
        https://huggingface.co/settings/tokens."""
    print(ERR_MSG, file=sys.stderr)
    # gr.errors.GradioError(ERR_MSG)
    # gr.close_all(verbose=False)
    sys.exit(1)

API_URL = get_url_from_env_or_default_path("STARCODER_API", DEFAULT_STARCODER_API_PATH)
API_URL_BASE = get_url_from_env_or_default_path("STARCODER_BASE_API", DEFAULT_STARCODER_BASE_API_PATH)

preview("StarCoder Model's URL", API_URL)
preview("StarCoderBase Model's URL", API_URL_BASE)
preview("HF Token", HF_TOKEN, ofuscate=True)

DEFAULT_PORT = 7860

FIM_INDICATOR = "<FILL_HERE>"

# Loads the whole content of the formats.md file
# and stores it into the FORMATS variable
STATIC_PATH = "static"
FORMATS = get_file_as_string("formats.md", path=STATIC_PATH)
CSS = get_file_as_string("styles.css", path=STATIC_PATH)
community_icon_svg = get_file_as_string("community_icon.svg", path=STATIC_PATH)
loading_icon_svg = get_file_as_string("loading_icon.svg", path=STATIC_PATH)

# todo: evaluate making STATIC_PATH the default path instead of the current one
README = get_file_as_string("README.md")

# Slicing the different sections from the README
readme_sections = get_sections(README, "---")

manifest, description, disclaimer = readme_sections[:3]

theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=sizes.radius_sm,
    font=[
        gr.themes.GoogleFont("Rubik"),
        "ui-sans-serif",
        "system-ui",
        "sans-serif",
    ],
    text_size=sizes.text_lg,
)

HEADERS = {
    "Authorization": f"Bearer {HF_TOKEN}",
}
client = Client(API_URL, headers = HEADERS)
client_base = Client(API_URL_BASE, headers = HEADERS)

def generate(prompt,
        temperature = 0.9,
        max_new_tokens = 256,
        top_p = 0.95,
        repetition_penalty = 1.0,
        version = "StarCoder",
    ):

    temperature = min(float(temperature), MIN_TEMPERATURE)
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature = temperature,
        max_new_tokens = max_new_tokens,
        top_p = top_p,
        repetition_penalty = repetition_penalty,
        do_sample = True,
        seed = 42,
    )

    if fim_mode := FIM_INDICATOR in prompt:
        try:
            prefix, suffix = prompt.split(FIM_INDICATOR)
        except Exception as err:
            print(str(err))
            raise ValueError(f"Only one {FIM_INDICATOR} allowed in prompt!") from err
        prompt = f"{FIM_PREFIX}{prefix}{FIM_SUFFIX}{suffix}{FIM_MIDDLE}"

    model_client = client if version == "StarCoder" else client_base

    stream = model_client.generate_stream(prompt, **generate_kwargs)

    output = prefix if fim_mode else prompt

    for response in stream:
        if response.token.text == END_OF_TEXT:
            if fim_mode:
                output += suffix
            else:
                return output
        else:
            output += response.token.text
        # todo: log this value while in debug mode
        # previous_token = response.token.text
        yield output
    return output

# todo: move it into the README too
examples = [
    "X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1)\n\n# Train a logistic regression model, predict the labels on the test set and compute the accuracy score",
    "// Returns every other value in the array as a new array.\nfunction everyOther(arr) {",
    "def alternating(list1, list2):\n   results = []\n   for i in range(min(len(list1), len(list2))):\n       results.append(list1[i])\n       results.append(list2[i])\n   if len(list1) > len(list2):\n       <FILL_HERE>\n   else:\n       results.extend(list2[i+1:])\n   return results",
]

def process_example(args):
    for x in generate(args):
        pass
    return x


with gr.Blocks(theme=theme, analytics_enabled=False, css=CSS) as demo:
    with gr.Column():
        gr.Markdown(description)
        with gr.Row():
            with gr.Column():
                instruction = gr.Textbox(
                    placeholder="Enter your code here",
                    label="Code",
                    elem_id="q-input",
                )
                submit = gr.Button("Generate", variant="primary")
                output = gr.Code(elem_id="q-output", lines=30)
                with gr.Row():
                    with gr.Column():
                        with gr.Accordion("Advanced settings", open=False):
                            with gr.Row():
                                column_1, column_2 = gr.Column(), gr.Column()
                                with column_1:
                                    temperature = gr.Slider(
                                        label="Temperature",
                                        value=0.2,
                                        minimum=0.0,
                                        maximum=1.0,
                                        step=0.05,
                                        interactive=True,
                                        info="Higher values produce more diverse outputs",
                                    )
                                    max_new_tokens = gr.Slider(
                                        label="Max new tokens",
                                        value=256,
                                        minimum=0,
                                        maximum=8192,
                                        step=64,
                                        interactive=True,
                                        info="The maximum numbers of new tokens",
                                    )
                                with column_2:
                                    top_p = gr.Slider(
                                        label="Top-p (nucleus sampling)",
                                        value=0.90,
                                        minimum=0.0,
                                        maximum=1,
                                        step=0.05,
                                        interactive=True,
                                        info="Higher values sample more low-probability tokens",
                                    )
                                    repetition_penalty = gr.Slider(
                                        label="Repetition penalty",
                                        value=1.2,
                                        minimum=1.0,
                                        maximum=2.0,
                                        step=0.05,
                                        interactive=True,
                                        info="Penalize repeated tokens",
                                    )
                    with gr.Column():
                        version = gr.Dropdown(
                                    ["StarCoderBase", "StarCoder"],
                                    value="StarCoder",
                                    label="Version",
                                    info="",
                                    )
                gr.Markdown(disclaimer)
                with gr.Group(elem_id="share-btn-container"):
                    community_icon = gr.HTML(community_icon_svg, visible=True)
                    loading_icon = gr.HTML(loading_icon_svg, visible=True)
                    share_button = gr.Button(
                        "Share to community", elem_id="share-btn", visible=True
                    )
                gr.Examples(
                    examples=examples,
                    inputs=[instruction],
                    cache_examples=False,
                    fn=process_example,
                    outputs=[output],
                )
                gr.Markdown(FORMATS)

    submit.click(
        generate,
        inputs=[instruction, temperature, max_new_tokens, top_p, repetition_penalty, version],
        outputs=[output],
    )
    share_button.click(None, [], [], _js=share_js)

demo.queue(concurrency_count=16).launch(debug=True, server_port=DEFAULT_PORT)