Firefly777a commited on
Commit
0a574ec
·
1 Parent(s): 9dd8d0a

Major Changes changed approach to now do debugging

Browse files
Files changed (1) hide show
  1. app.py +33 -51
app.py CHANGED
@@ -1,6 +1,6 @@
1
 
2
  '''
3
- This script calls the ada model from openai api to predict the next few words.
4
  '''
5
  import os
6
  os.system("pip install --upgrade pip")
@@ -17,27 +17,32 @@ import torch
17
  from transformers import AutoModelForCausalLM
18
  from transformers import AutoTokenizer
19
  import time
20
- # import streaming.py
21
- # from next_word_prediction import GPT2
22
 
 
23
 
24
-
25
-
26
- #gpt2 = AutoModelForCausalLM.from_pretrained("gpt2", return_dict_in_generate=True)
27
- #tokenizer = AutoTokenizer.from_pretrained("gpt2")
28
-
29
- ### /code snippet
30
-
31
-
32
- # get gpt2 model
33
- #generator = pipeline('text-generation', model='gpt2')
 
 
 
 
 
 
34
 
35
  # whisper model specification
36
  model = whisper.load_model("tiny")
37
 
38
-
39
 
40
- def inference(audio, state=""):
41
  # load audio data
42
  audio = whisper.load_audio(audio)
43
  # ensure sample is in correct format for inference
@@ -54,32 +59,12 @@ def inference(audio, state=""):
54
  result = whisper.decode(model, mel, options)
55
  print("result pre gp model from whisper: ", result, ".text ", result.text, "and the data type: ", type(result.text))
56
 
57
- PROMPT = """This is a tool for helping someone with memory issues remember the next word.
58
-
59
- The predictions follow a few rules:
60
- 1) The predictions are suggestions of ways to continue the transcript as if someone forgot what the next word was.
61
- 2) The predictions do not repeat themselves.
62
- 3) The predictions focus on suggesting nouns, adjectives, and verbs.
63
- 4) The predictions are related to the context in the transcript.
64
-
65
- EXAMPLES:
66
- Transcript: Tomorrow night we're going out to
67
- Prediction: The Movies, A Restaurant, A Baseball Game, The Theater, A Party for a friend
68
- Transcript: I would like to order a cheeseburger with a side of
69
- Prediction: Frnech fries, Milkshake, Apple slices, Side salad, Extra katsup
70
- Transcript: My friend Savanah is
71
- Prediction: An elecrical engineer, A marine biologist, A classical musician
72
- Transcript: I need to buy a birthday
73
- Prediction: Present, Gift, Cake, Card
74
- Transcript: """
75
- text = PROMPT + result.text + "\nPrediction: "
76
-
77
- openai.api_key = os.environ["Openai_APIkey"]
78
 
79
  response = openai.Completion.create(
80
- model="text-davinci-003",
81
  prompt=text,
82
- temperature=0.9,
83
  max_tokens=8,
84
  n=5)
85
 
@@ -97,19 +82,16 @@ Transcript: """
97
  infers = list(map(lambda x: x.replace("\n", ""), temp))
98
  #infered = list(map(lambda x: x.split(','), infers))
99
 
100
-
101
-
102
-
103
- # result.text
104
- #return getText, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
105
- return result.text, state, infers
106
-
107
-
108
 
109
  # get audio from microphone
110
  gr.Interface(
111
- fn=inference,
112
- inputs=[gr.inputs.Audio(source="microphone", type="filepath"), "state"],
113
- outputs=["textbox","state","textbox"],
114
- live=True).launch()
115
-
 
 
 
 
 
1
 
2
  '''
3
+ This script calls the model from openai api to predict the next few words.
4
  '''
5
  import os
6
  os.system("pip install --upgrade pip")
 
17
  from transformers import AutoModelForCausalLM
18
  from transformers import AutoTokenizer
19
  import time
 
 
20
 
21
+ # PROMPT = """This is a tool for helping someone with memory issues remember the next word.
22
 
23
+ # The predictions follow a few rules:
24
+ # 1) The predictions are suggestions of ways to continue the transcript as if someone forgot what the next word was.
25
+ # 2) The predictions do not repeat themselves.
26
+ # 3) The predictions focus on suggesting nouns, adjectives, and verbs.
27
+ # 4) The predictions are related to the context in the transcript.
28
+
29
+ # EXAMPLES:
30
+ # Transcript: Tomorrow night we're going out to
31
+ # Prediction: The Movies, A Restaurant, A Baseball Game, The Theater, A Party for a friend
32
+ # Transcript: I would like to order a cheeseburger with a side of
33
+ # Prediction: Frnech fries, Milkshake, Apple slices, Side salad, Extra katsup
34
+ # Transcript: My friend Savanah is
35
+ # Prediction: An elecrical engineer, A marine biologist, A classical musician
36
+ # Transcript: I need to buy a birthday
37
+ # Prediction: Present, Gift, Cake, Card
38
+ # Transcript: """
39
 
40
  # whisper model specification
41
  model = whisper.load_model("tiny")
42
 
43
+ openai.api_key = os.environ["Openai_APIkey"]
44
 
45
+ def debug_inference(audio, prompt, model, temperature, state=""):
46
  # load audio data
47
  audio = whisper.load_audio(audio)
48
  # ensure sample is in correct format for inference
 
59
  result = whisper.decode(model, mel, options)
60
  print("result pre gp model from whisper: ", result, ".text ", result.text, "and the data type: ", type(result.text))
61
 
62
+ text = prompt + result.text + "\nPrediction: "
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
  response = openai.Completion.create(
65
+ model=model,
66
  prompt=text,
67
+ temperature=temperature,
68
  max_tokens=8,
69
  n=5)
70
 
 
82
  infers = list(map(lambda x: x.replace("\n", ""), temp))
83
  #infered = list(map(lambda x: x.split(','), infers))
84
 
85
+ return result.text, state, infers, text
 
 
 
 
 
 
 
86
 
87
  # get audio from microphone
88
  gr.Interface(
89
+ fn=debug_inference,
90
+ inputs=[gr.inputs.Audio(source="microphone", type="filepath"),
91
+ gr.inputs.Textbox(lines=15, placeholder="Enter a prompt here"),
92
+ gr.inputs.Dropdown(["text-ada-001", "text-davinci-002", "text-davinci-003", "gpt-3.5-turbo"], label="Model"),
93
+ gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.8, step=0.1, label="Temperature"),
94
+ "state"
95
+ ],
96
+ outputs=["textbox","state","textbox", "textbox"],
97
+ live=True).launch()