Firefly777a commited on
Commit
cd851c8
·
1 Parent(s): c292733

create app.py

Browse files
Files changed (1) hide show
  1. app.py +178 -0
app.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import Any, Callable, List, Optional, Tuple
3
+
4
+ import nltk
5
+ nltk.download('punkt')
6
+ import gradio as gr
7
+ from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
8
+
9
+ # A folderpath for where the examples are stored
10
+ EXAMPLES_FOLDER_NAME = "examples"
11
+
12
+ # A List of repo names for the huggingface models available for inference
13
+ HF_MODELS = ["huggingface/facebook/bart-large-cnn",
14
+ "huggingface/sshleifer/distilbart-xsum-12-6",
15
+ "huggingface/google/pegasus-xsum",
16
+ "huggingface/philschmid/bart-large-cnn-samsum",
17
+ "huggingface/linydub/bart-large-samsum",
18
+ "huggingface/philschmid/distilbart-cnn-12-6-samsum",
19
+ "huggingface/knkarthick/MEETING-SUMMARY-BART-LARGE-XSUM-SAMSUM-DIALOGSUM-AMI",
20
+ ]
21
+
22
+
23
+ ################################################################################
24
+ # Functions: Document statistics
25
+ ################################################################################
26
+ # Function that uses a huggingface tokenizer to count how many tokens are in a text
27
+ def count_tokens(input_text, model_path='sshleifer/distilbart-cnn-12-6'):
28
+ # Load a huggingface tokenizer
29
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
30
+ # Tokenize the text
31
+ tokens = tokenizer(input_text)
32
+ # Count the number of tokens
33
+ return len(tokens['input_ids'])
34
+
35
+ # Function that uses nltk to count sentences in a text
36
+ def count_sentences(input_text):
37
+ # Use nltk to count sentences in the text
38
+ number_of_sentences = nltk.sent_tokenize(input_text)
39
+ # Return the number of sentences
40
+ return len(number_of_sentences)
41
+
42
+ # Function that counts the number of words in a text
43
+ def count_words(input_text):
44
+ # Use nltk to count words in the text
45
+ number_of_words = nltk.word_tokenize(input_text)
46
+ # Return the number of words
47
+ return len(number_of_words)
48
+
49
+ # Function that computes a few document statistics such as the number of tokens, sentences, and words
50
+ def compute_stats(input_text, models: Optional[List[str]] = None):
51
+ # Count the number of tokens
52
+ num_tokens = count_tokens(input_text)
53
+ # Count the number of sentences
54
+ num_sentences = count_sentences(input_text)
55
+ # Count the number of words
56
+ num_words = count_words(input_text)
57
+ # Return the document statistics formatted as a string
58
+ output_str = "| Tokens: {0} \n| Sentences: {1} \n| Words: {2}".format(num_tokens, num_sentences, num_words) + "\n"
59
+ output_str += "The max number of tokens for the model is: 1024" + "\n" # I manually set 1024 as the max. I don't intend to use any models that are smaller anyway.
60
+ # output_str += "Number of documents splits: 17.5"
61
+ return output_str
62
+
63
+ # # A function to loop through a list of strings
64
+ # # returning the last element in the filepath for each string
65
+ # def get_file_names(file_paths):
66
+ # # Create a list of file names
67
+ # file_names = []
68
+ # # Loop through the file paths
69
+ # for file_path in file_paths:
70
+ # # Get the last element in the file path
71
+ # file_name = file_path.split('/')[-2:]
72
+ # # Add the file name to the list
73
+ # file_names.append(file_name)
74
+ # # Loop through the file names and append to a string
75
+ # file_names_str = ""
76
+ # for file_name in file_names:
77
+ # breakpoint()
78
+ # file_names_str += file_name[0] + "\n"
79
+ # # Return the list of file names
80
+ # return file_names_str
81
+
82
+ ################################################################################
83
+ # Functions: Huggingface Inference
84
+ ################################################################################
85
+
86
+ # Function that uses a huggingface pipeline to predict a summary of a text
87
+ # input is a text string of a dialog conversation
88
+ def predict(dialog_text):
89
+ # Load a huggingface model
90
+ model = pipeline('summarization', model="philschmid/bart-large-cnn-samsum") #model='sshleifer/distilbart-cnn-12-6')
91
+ # Build tokenizer_kwargs to set a max length and truncate the data on inference
92
+ tokenizer_kwargs = {'truncation': True, 'max_length': 1024}
93
+ # Use the model to predict a summary of the text
94
+ summary = model(dialog_text, **tokenizer_kwargs)
95
+ # Return the summary w/ the model name
96
+ output = f"{hf_model_name} output: {summary[0]['summary_text']}"
97
+ return output, "output2"
98
+
99
+ def recursive_predict(dialog_text: str, hf_model_name: Tuple[str]):
100
+ breakpoint()
101
+ asdf = "asdf"
102
+ return output
103
+
104
+ ################################################################################
105
+ # Functions: Gradio Utilities
106
+ ################################################################################
107
+ # Function to build examples for gradio app
108
+ # Load text files from the examples folder as a list of strings for gradio
109
+ def get_examples(folder_path):
110
+ # Create a list of strings
111
+ examples = []
112
+ # Loop through the files in the folder
113
+ for file in os.listdir(folder_path):
114
+ # Load the file
115
+ with open(os.path.join(folder_path, file), 'r') as f:
116
+ # Add the file to the list
117
+ examples.append([f.read(), ["None"]])
118
+ # Return the list of strings
119
+ return examples
120
+
121
+ # A function that loops through a list of model paths, creates a gradio interface with the
122
+ # model name, and adds it to the list of interfaces
123
+ # It outputs a list of interfaces
124
+ def get_hf_interfaces(models_to_load):
125
+ # Create a list of interfaces
126
+ interfaces = []
127
+ # Loop through the HF_MODELS
128
+ for model in models_to_load:
129
+ # Create a gradio interface with the model name
130
+ interface = gr.Interface.load(model, title="this is a test TITLE", alias="this is an ALIAS")
131
+ # Add the interface to the list
132
+ interfaces.append(interface)
133
+ # Return the list of interfaces
134
+ return interfaces
135
+
136
+ ################################################################################
137
+ # Build Gradio app
138
+ ################################################################################
139
+ # print_details = gr.Interface(
140
+ # fn=lambda x: get_file_names(HF_MODELS),
141
+ # inputs="text",
142
+ # outputs="text",
143
+ # title="Statistics of the document"
144
+ # )
145
+ # Outputs a string of various document statistics
146
+ document_statistics = gr.Interface(
147
+ fn=compute_stats,
148
+ inputs="text",
149
+ outputs="text",
150
+ title="Statistics of the document"
151
+ )
152
+ maddie_mixer_summarization = gr.Interface(
153
+ fn=recursive_predict,
154
+ inputs="text",
155
+ outputs="text",
156
+ title="Statistics of the document"
157
+ )
158
+
159
+ # Build Examples to pass along to the gradio app
160
+ examples = get_examples(EXAMPLES_FOLDER_NAME)
161
+
162
+ # Build a list of huggingface interfaces from model paths,
163
+ # then add document statistics, and any custom interfaces
164
+ all_interfaces = get_hf_interfaces(HF_MODELS)
165
+ all_interfaces.insert(0, document_statistics) # Insert the statistics interface at the beginning
166
+ # all_interfaces.insert(0, print_details)
167
+ # all_interfaces.append(maddie_mixer_summarization) # Add the interface for the maddie mixer
168
+
169
+ # Build app
170
+ app = gr.Parallel(*all_interfaces,
171
+ title='Text Summarizer (Maddie Custom)',
172
+ description="Write a summary of a text",
173
+ examples=examples,
174
+ inputs=gr.inputs.Textbox(lines = 10, label="Text"),
175
+ )
176
+
177
+ # Launch
178
+ app.launch(inbrowser=True, show_error=True)