Spaces:
Running
Running
import redis | |
import pickle | |
import torch | |
from PIL import Image | |
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, FluxPipeline, DiffusionPipeline, DPMSolverMultistepScheduler | |
from diffusers.utils import export_to_video | |
from transformers import pipeline as transformers_pipeline, AutoModelForCausalLM, AutoTokenizer, TrainingArguments | |
from audiocraft.models import MusicGen | |
import gradio as gr | |
from huggingface_hub import snapshot_download, HfApi, HfFolder | |
import multiprocessing | |
import io | |
from dotenv import load_dotenv | |
import os | |
# Cargar las variables del archivo .env | |
load_dotenv() | |
# Obtener las variables de entorno | |
hf_token = os.getenv("HF_TOKEN") | |
redis_host = os.getenv("REDIS_HOST") | |
redis_port = os.getenv("REDIS_PORT") | |
redis_password = os.getenv("REDIS_PASSWORD") | |
# Usar las variables de huggingface | |
HfFolder.save_token(hf_token) | |
# Usar las variables de redis | |
def connect_to_redis(): | |
return redis.Redis(host=redis_host, port=redis_port, password=redis_password) | |
def load_object_from_redis(key): | |
with connect_to_redis() as redis_client: | |
obj_data = redis_client.get(key) | |
return pickle.loads(obj_data) if obj_data else None | |
def save_object_to_redis(key, obj): | |
with connect_to_redis() as redis_client: | |
redis_client.set(key, pickle.dumps(obj)) | |
def get_model_or_download(model_id, redis_key, loader_func): | |
model = load_object_from_redis(redis_key) | |
if not model: | |
model = loader_func(model_id, use_auth_token=hf_token, torch_dtype=torch.float16) | |
save_object_to_redis(redis_key, model) | |
return model | |
def generate_image(prompt): | |
return text_to_image_pipeline(prompt).images[0] | |
def edit_image_with_prompt(image, prompt, strength=0.75): | |
return img2img_pipeline(prompt=prompt, init_image=image.convert("RGB"), strength=strength).images[0] | |
def generate_song(prompt, duration=10): | |
return music_gen.generate(prompt, duration=duration) | |
def generate_text(prompt): | |
return text_gen_pipeline([{"role": "user", "content": prompt}], max_new_tokens=256)[0]["generated_text"][-1]["content"].strip() | |
def generate_flux_image(prompt): | |
return flux_pipeline( | |
prompt, | |
guidance_scale=0.0, | |
num_inference_steps=4, | |
max_sequence_length=256, | |
generator=torch.Generator("cpu").manual_seed(0) | |
).images[0] | |
def generate_code(prompt): | |
inputs = starcoder_tokenizer.encode(prompt, return_tensors="pt").to("cuda") | |
outputs = starcoder_model.generate(inputs) | |
return starcoder_tokenizer.decode(outputs[0]) | |
def generate_video(prompt): | |
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16") | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_model_cpu_offload() | |
return export_to_video(pipe(prompt, num_inference_steps=25).frames) | |
def test_model_meta_llama(): | |
messages = [ | |
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, | |
{"role": "user", "content": "Who are you?"} | |
] | |
return meta_llama_pipeline(messages, max_new_tokens=256)[0]["generated_text"][-1] | |
def train_model(model, dataset, epochs, batch_size, learning_rate): | |
output_dir = io.BytesIO() | |
training_args = TrainingArguments( | |
output_dir=output_dir, | |
num_train_epochs=epochs, | |
per_device_train_batch_size=batch_size, | |
learning_rate=learning_rate, | |
) | |
trainer = Trainer(model=model, args=training_args, train_dataset=dataset) | |
trainer.train() | |
save_object_to_redis("trained_model", model) | |
save_object_to_redis("training_results", output_dir.getvalue()) | |
def run_task(task_queue): | |
while True: | |
task = task_queue.get() | |
if task is None: | |
break | |
func, args, kwargs = task | |
func(*args, **kwargs) | |
task_queue = multiprocessing.Queue() | |
num_processes = multiprocessing.cpu_count() | |
processes = [] | |
for _ in range(num_processes): | |
p = multiprocessing.Process(target=run_task, args=(task_queue,)) | |
p.start() | |
processes.append(p) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
text_to_image_pipeline = get_model_or_download("CompVis/stable-diffusion-v1-4", "text_to_image_model", StableDiffusionPipeline.from_pretrained).to(device) | |
img2img_pipeline = get_model_or_download("runwayml/stable-diffusion-inpainting", "img2img_model", StableDiffusionImg2ImgPipeline.from_pretrained).to(device) | |
flux_pipeline = get_model_or_download("black-forest-labs/FLUX.1-schnell", "flux_model", FluxPipeline.from_pretrained) | |
flux_pipeline.enable_model_cpu_offload() | |
music_gen = load_object_from_redis("music_gen") or MusicGen.get_pretrained('melody', use_auth_token=hf_token) | |
save_object_to_redis("music_gen", music_gen) | |
text_gen_pipeline = load_object_from_redis("text_gen_pipeline") or transformers_pipeline( | |
"text-generation", | |
model="google/gemma-2-2b-it", | |
model_kwargs={"torch_dtype": torch.bfloat16}, | |
device=device, | |
use_auth_token=hf_token, | |
) | |
save_object_to_redis("text_gen_pipeline", text_gen_pipeline) | |
starcoder_tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoder2-15b", use_auth_token=hf_token) | |
starcoder_model = AutoModelForCausalLM.from_pretrained("bigcode/starcoder2-15b", device_map="auto", torch_dtype=torch.bfloat16, use_auth_token=hf_token) | |
meta_llama_pipeline = transformers_pipeline( | |
"text-generation", | |
model="meta-llama/Meta-Llama-3.1-8B-Instruct", | |
model_kwargs={"torch_dtype": torch.bfloat16}, | |
device_map="auto", | |
use_auth_token=hf_token | |
) | |
gen_image_tab = gr.Interface(generate_image, gr.inputs.Textbox(label="Prompt:"), gr.outputs.Image(type="pil"), title="Generate Images") | |
edit_image_tab = gr.Interface(edit_image_with_prompt, [gr.inputs.Image(type="pil", label="Image:"), gr.inputs.Textbox(label="Prompt:"), gr.inputs.Slider(0.1, 1.0, 0.75, step=0.05, label="Strength:")], gr.outputs.Image(type="pil"), title="Edit Images") | |
generate_song_tab = gr.Interface(generate_song, [gr.inputs.Textbox(label="Prompt:"), gr.inputs.Slider(5, 60, 10, step=1, label="Duration (s):")], gr.outputs.Audio(type="numpy"), title="Generate Songs") | |
generate_text_tab = gr.Interface(generate_text, gr.inputs.Textbox(label="Prompt:"), gr.outputs.Textbox(label="Generated Text:"), title="Generate Text") | |
generate_flux_image_tab = gr.Interface(generate_flux_image, gr.inputs.Textbox(label="Prompt:"), gr.outputs.Image(type="pil"), title="Generate FLUX Images") | |
model_meta_llama_test_tab = gr.Interface(test_model_meta_llama, gr.inputs.Textbox(label="Test Input:"), gr.outputs.Textbox(label="Model Output:"), title="Test Meta-Llama") | |
app = gr.TabbedInterface( | |
[gen_image_tab, edit_image_tab, generate_song_tab, generate_text_tab, generate_flux_image_tab, model_meta_llama_test_tab], | |
["Generate Image", "Edit Image", "Generate Song", "Generate Text", "Generate FLUX Image", "Test Meta-Llama"] | |
) | |
app.launch(share=True) | |
for _ in range(num_processes): | |
task_queue.put(None) | |
for p in processes: | |
p.join() |