Spaces:
Running
Running
File size: 28,153 Bytes
485b791 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 |
import os
import pickle
import torch
from PIL import Image
from diffusers import (
StableDiffusionPipeline,
StableDiffusionImg2ImgPipeline,
FluxPipeline,
DiffusionPipeline,
DPMSolverMultistepScheduler,
)
from transformers import (
pipeline as transformers_pipeline,
AutoModelForCausalLM,
AutoTokenizer,
GPT2Tokenizer,
GPT2Model,
AutoModel
)
from audiocraft.models import musicgen
import gradio as gr
from huggingface_hub import snapshot_download, HfApi, HfFolder
import io
import time
from tqdm import tqdm
from google.cloud import storage
import json
hf_token = os.getenv("HF_TOKEN")
gcs_credentials = json.loads(os.getenv("GCS_CREDENTIALS"))
gcs_bucket_name = os.getenv("GCS_BUCKET_NAME")
HfFolder.save_token(hf_token)
storage_client = storage.Client.from_service_account_info(gcs_credentials)
bucket = storage_client.bucket(gcs_bucket_name)
def load_object_from_gcs(blob_name):
blob = bucket.blob(blob_name)
if blob.exists():
return pickle.loads(blob.download_as_bytes())
return None
def save_object_to_gcs(blob_name, obj):
blob = bucket.blob(blob_name)
blob.upload_from_string(pickle.dumps(obj))
def get_model_or_download(model_id, blob_name, loader_func):
model = load_object_from_gcs(blob_name)
if model:
return model
try:
with tqdm(total=1, desc=f"Downloading {model_id}") as pbar:
model = loader_func(model_id, torch_dtype=torch.float16)
pbar.update(1)
save_object_to_gcs(blob_name, model)
return model
except Exception as e:
print(f"Failed to load or save model: {e}")
return None
def generate_image(prompt):
blob_name = f"diffusers/generated_image:{prompt}"
image_bytes = load_object_from_gcs(blob_name)
if not image_bytes:
try:
with tqdm(total=1, desc="Generating image") as pbar:
image = text_to_image_pipeline(prompt).images[0]
pbar.update(1)
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
image_bytes = buffered.getvalue()
save_object_to_gcs(blob_name, image_bytes)
except Exception as e:
print(f"Failed to generate image: {e}")
return None
return image_bytes
def edit_image_with_prompt(image_bytes, prompt, strength=0.75):
blob_name = f"diffusers/edited_image:{prompt}:{strength}"
edited_image_bytes = load_object_from_gcs(blob_name)
if not edited_image_bytes:
try:
image = Image.open(io.BytesIO(image_bytes))
with tqdm(total=1, desc="Editing image") as pbar:
edited_image = img2img_pipeline(
prompt=prompt, image=image, strength=strength
).images[0]
pbar.update(1)
buffered = io.BytesIO()
edited_image.save(buffered, format="JPEG")
edited_image_bytes = buffered.getvalue()
save_object_to_gcs(blob_name, edited_image_bytes)
except Exception as e:
print(f"Failed to edit image: {e}")
return None
return edited_image_bytes
def generate_song(prompt, duration=10):
blob_name = f"music/generated_song:{prompt}:{duration}"
song_bytes = load_object_from_gcs(blob_name)
if not song_bytes:
try:
with tqdm(total=1, desc="Generating song") as pbar:
song = music_gen(prompt, duration=duration)
pbar.update(1)
song_bytes = song[0].getvalue()
save_object_to_gcs(blob_name, song_bytes)
except Exception as e:
print(f"Failed to generate song: {e}")
return None
return song_bytes
def generate_text(prompt):
blob_name = f"transformers/generated_text:{prompt}"
text = load_object_from_gcs(blob_name)
if not text:
try:
with tqdm(total=1, desc="Generating text") as pbar:
text = text_gen_pipeline(prompt, max_new_tokens=256)[0][
"generated_text"
].strip()
pbar.update(1)
save_object_to_gcs(blob_name, text)
except Exception as e:
print(f"Failed to generate text: {e}")
return None
return text
def generate_flux_image(prompt):
blob_name = f"diffusers/generated_flux_image:{prompt}"
flux_image_bytes = load_object_from_gcs(blob_name)
if not flux_image_bytes:
try:
with tqdm(total=1, desc="Generating FLUX image") as pbar:
flux_image = flux_pipeline(
prompt,
guidance_scale=0.0,
num_inference_steps=4,
max_length=256,
generator=torch.Generator("cpu").manual_seed(0),
).images[0]
pbar.update(1)
buffered = io.BytesIO()
flux_image.save(buffered, format="JPEG")
flux_image_bytes = buffered.getvalue()
save_object_to_gcs(blob_name, flux_image_bytes)
except Exception as e:
print(f"Failed to generate flux image: {e}")
return None
return flux_image_bytes
def generate_code(prompt):
blob_name = f"transformers/generated_code:{prompt}"
code = load_object_from_gcs(blob_name)
if not code:
try:
with tqdm(total=1, desc="Generating code") as pbar:
inputs = starcoder_tokenizer.encode(prompt, return_tensors="pt")
outputs = starcoder_model.generate(inputs, max_new_tokens=256)
code = starcoder_tokenizer.decode(outputs[0])
pbar.update(1)
save_object_to_gcs(blob_name, code)
except Exception as e:
print(f"Failed to generate code: {e}")
return None
return code
def test_model_meta_llama():
blob_name = "transformers/meta_llama_test_response"
response = load_object_from_gcs(blob_name)
if not response:
try:
messages = [
{
"role": "system",
"content": "You are a pirate chatbot who always responds in pirate speak!",
},
{"role": "user", "content": "Who are you?"},
]
with tqdm(total=1, desc="Testing Meta-Llama") as pbar:
response = meta_llama_pipeline(messages, max_new_tokens=256)[0][
"generated_text"
].strip()
pbar.update(1)
save_object_to_gcs(blob_name, response)
except Exception as e:
print(f"Failed to test Meta-Llama: {e}")
return None
return response
def generate_image_sdxl(prompt):
blob_name = f"diffusers/generated_image_sdxl:{prompt}"
image_bytes = load_object_from_gcs(blob_name)
if not image_bytes:
try:
with tqdm(total=1, desc="Generating SDXL image") as pbar:
image = base(
prompt=prompt,
num_inference_steps=40,
denoising_end=0.8,
output_type="latent",
).images
image = refiner(
prompt=prompt,
num_inference_steps=40,
denoising_start=0.8,
image=image,
).images[0]
pbar.update(1)
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
image_bytes = buffered.getvalue()
save_object_to_gcs(blob_name, image_bytes)
except Exception as e:
print(f"Failed to generate SDXL image: {e}")
return None
return image_bytes
def generate_musicgen_melody(prompt):
blob_name = f"music/generated_musicgen_melody:{prompt}"
song_bytes = load_object_from_gcs(blob_name)
if not song_bytes:
try:
with tqdm(total=1, desc="Generating MusicGen melody") as pbar:
melody, sr = torchaudio.load("./assets/bach.mp3")
wav = music_gen_melody.generate_with_chroma(
[prompt], melody[None].expand(3, -1, -1), sr
)
pbar.update(1)
song_bytes = wav[0].getvalue()
save_object_to_gcs(blob_name, song_bytes)
except Exception as e:
print(f"Failed to generate MusicGen melody: {e}")
return None
return song_bytes
def generate_musicgen_large(prompt):
blob_name = f"music/generated_musicgen_large:{prompt}"
song_bytes = load_object_from_gcs(blob_name)
if not song_bytes:
try:
with tqdm(total=1, desc="Generating MusicGen large") as pbar:
wav = music_gen_large.generate([prompt])
pbar.update(1)
song_bytes = wav[0].getvalue()
save_object_to_gcs(blob_name, song_bytes)
except Exception as e:
print(f"Failed to generate MusicGen large: {e}")
return None
return song_bytes
def transcribe_audio(audio_sample):
blob_name = f"transformers/transcribed_audio:{hash(audio_sample.tobytes())}"
text = load_object_from_gcs(blob_name)
if not text:
try:
with tqdm(total=1, desc="Transcribing audio") as pbar:
text = whisper_pipeline(audio_sample.copy(), batch_size=8)["text"]
pbar.update(1)
save_object_to_gcs(blob_name, text)
except Exception as e:
print(f"Failed to transcribe audio: {e}")
return None
return text
def generate_mistral_instruct(prompt):
blob_name = f"transformers/generated_mistral_instruct:{prompt}"
response = load_object_from_gcs(blob_name)
if not response:
try:
conversation = [{"role": "user", "content": prompt}]
with tqdm(total=1, desc="Generating Mistral Instruct response") as pbar:
inputs = mistral_instruct_tokenizer.apply_chat_template(
conversation,
tools=tools,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
)
outputs = mistral_instruct_model.generate(
**inputs, max_new_tokens=1000
)
response = mistral_instruct_tokenizer.decode(
outputs[0], skip_special_tokens=True
)
pbar.update(1)
save_object_to_gcs(blob_name, response)
except Exception as e:
print(f"Failed to generate Mistral Instruct response: {e}")
return None
return response
def generate_mistral_nemo(prompt):
blob_name = f"transformers/generated_mistral_nemo:{prompt}"
response = load_object_from_gcs(blob_name)
if not response:
try:
conversation = [{"role": "user", "content": prompt}]
with tqdm(total=1, desc="Generating Mistral Nemo response") as pbar:
inputs = mistral_nemo_tokenizer.apply_chat_template(
conversation,
tools=tools,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
)
outputs = mistral_nemo_model.generate(**inputs, max_new_tokens=1000)
response = mistral_nemo_tokenizer.decode(
outputs[0], skip_special_tokens=True
)
pbar.update(1)
save_object_to_gcs(blob_name, response)
except Exception as e:
print(f"Failed to generate Mistral Nemo response: {e}")
return None
return response
def generate_gpt2_xl(prompt):
blob_name = f"transformers/generated_gpt2_xl:{prompt}"
response = load_object_from_gcs(blob_name)
if not response:
try:
with tqdm(total=1, desc="Generating GPT-2 XL response") as pbar:
inputs = gpt2_xl_tokenizer(prompt, return_tensors="pt")
outputs = gpt2_xl_model(**inputs)
response = gpt2_xl_tokenizer.decode(
outputs[0][0], skip_special_tokens=True
)
pbar.update(1)
save_object_to_gcs(blob_name, response)
except Exception as e:
print(f"Failed to generate GPT-2 XL response: {e}")
return None
return response
def store_user_question(question):
blob_name = "user_questions.txt"
blob = bucket.blob(blob_name)
if blob.exists():
blob.download_to_filename("user_questions.txt")
with open("user_questions.txt", "a") as f:
f.write(question + "\n")
blob.upload_from_filename("user_questions.txt")
def retrain_models():
pass
def generate_text_to_video_ms_1_7b(prompt, num_frames=200):
blob_name = f"diffusers/text_to_video_ms_1_7b:{prompt}:{num_frames}"
video_bytes = load_object_from_gcs(blob_name)
if not video_bytes:
try:
with tqdm(total=1, desc="Generating video") as pbar:
video_frames = text_to_video_ms_1_7b_pipeline(
prompt, num_inference_steps=25, num_frames=num_frames
).frames
pbar.update(1)
video_path = export_to_video(video_frames)
with open(video_path, "rb") as f:
video_bytes = f.read()
save_object_to_gcs(blob_name, video_bytes)
os.remove(video_path)
except Exception as e:
print(f"Failed to generate video: {e}")
return None
return video_bytes
def generate_text_to_video_ms_1_7b_short(prompt):
blob_name = f"diffusers/text_to_video_ms_1_7b_short:{prompt}"
video_bytes = load_object_from_gcs(blob_name)
if not video_bytes:
try:
with tqdm(total=1, desc="Generating short video") as pbar:
video_frames = text_to_video_ms_1_7b_short_pipeline(
prompt, num_inference_steps=25
).frames
pbar.update(1)
video_path = export_to_video(video_frames)
with open(video_path, "rb") as f:
video_bytes = f.read()
save_object_to_gcs(blob_name, video_bytes)
os.remove(video_path)
except Exception as e:
print(f"Failed to generate short video: {e}")
return None
return video_bytes
text_to_image_pipeline = get_model_or_download(
"stabilityai/stable-diffusion-2",
"diffusers/text_to_image_model",
StableDiffusionPipeline.from_pretrained,
)
img2img_pipeline = get_model_or_download(
"CompVis/stable-diffusion-v1-4",
"diffusers/img2img_model",
StableDiffusionImg2ImgPipeline.from_pretrained,
)
flux_pipeline = get_model_or_download(
"black-forest-labs/FLUX.1-schnell",
"diffusers/flux_model",
FluxPipeline.from_pretrained,
)
text_gen_pipeline = transformers_pipeline(
"text-generation", model="google/gemma-2-9b", tokenizer="google/gemma-2-9b"
)
music_gen = (
load_object_from_gcs("music/music_gen")
or musicgen.MusicGen.get_pretrained("melody")
)
meta_llama_pipeline = get_model_or_download(
"meta-llama/Meta-Llama-3.1-8B-Instruct",
"transformers/meta_llama_model",
transformers_pipeline,
)
starcoder_model = AutoModelForCausalLM.from_pretrained("bigcode/starcoder")
starcoder_tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoder")
base = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
)
refiner = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0",
text_encoder_2=base.text_encoder_2,
vae=base.vae,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
)
music_gen_melody = musicgen.MusicGen.get_pretrained("melody")
music_gen_melody.set_generation_params(duration=8)
music_gen_large = musicgen.MusicGen.get_pretrained("large")
music_gen_large.set_generation_params(duration=8)
whisper_pipeline = transformers_pipeline(
"automatic-speech-recognition",
model="openai/whisper-small",
chunk_length_s=30,
)
mistral_instruct_model = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-Large-Instruct-2407",
torch_dtype=torch.bfloat16,
device_map="auto",
)
mistral_instruct_tokenizer = AutoTokenizer.from_pretrained(
"mistralai/Mistral-Large-Instruct-2407"
)
mistral_nemo_model = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-Nemo-Instruct-2407",
torch_dtype=torch.bfloat16,
device_map="auto",
)
mistral_nemo_tokenizer = AutoTokenizer.from_pretrained(
"mistralai/Mistral-Nemo-Instruct-2407"
)
gpt2_xl_tokenizer = GPT2Tokenizer.from_pretrained("gpt2-xl")
gpt2_xl_model = GPT2Model.from_pretrained("gpt2-xl")
llama_3_groq_70b_tool_use_pipeline = transformers_pipeline(
"text-generation", model="Groq/Llama-3-Groq-70B-Tool-Use"
)
phi_3_5_mini_instruct_model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3.5-mini-instruct", torch_dtype="auto", trust_remote_code=True
)
phi_3_5_mini_instruct_tokenizer = AutoTokenizer.from_pretrained(
"microsoft/Phi-3.5-mini-instruct"
)
phi_3_5_mini_instruct_pipeline = transformers_pipeline(
"text-generation",
model=phi_3_5_mini_instruct_model,
tokenizer=phi_3_5_mini_instruct_tokenizer,
)
meta_llama_3_1_8b_pipeline = transformers_pipeline(
"text-generation",
model="meta-llama/Meta-Llama-3.1-8B",
model_kwargs={"torch_dtype": torch.bfloat16},
)
meta_llama_3_1_70b_pipeline = transformers_pipeline(
"text-generation",
model="meta-llama/Meta-Llama-3.1-70B",
model_kwargs={"torch_dtype": torch.bfloat16},
)
medical_text_summarization_pipeline = transformers_pipeline(
"summarization", model="your/medical_text_summarization_model"
)
bart_large_cnn_summarization_pipeline = transformers_pipeline(
"summarization", model="facebook/bart-large-cnn"
)
flux_1_dev_pipeline = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
)
flux_1_dev_pipeline.enable_model_cpu_offload()
gemma_2_9b_pipeline = transformers_pipeline("text-generation", model="google/gemma-2-9b")
gemma_2_9b_it_pipeline = transformers_pipeline(
"text-generation",
model="google/gemma-2-9b-it",
model_kwargs={"torch_dtype": torch.bfloat16},
)
gemma_2_2b_pipeline = transformers_pipeline("text-generation", model="google/gemma-2-2b")
gemma_2_2b_it_pipeline = transformers_pipeline(
"text-generation",
model="google/gemma-2-2b-it",
model_kwargs={"torch_dtype": torch.bfloat16},
)
gemma_2_27b_tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b")
gemma_2_27b_model = AutoModelForCausalLM.from_pretrained("google/gemma-2-27b")
gemma_2_27b_it_pipeline = transformers_pipeline(
"text-generation",
model="google/gemma-2-27b-it",
model_kwargs={"torch_dtype": torch.bfloat16},
)
text_to_video_ms_1_7b_pipeline = DiffusionPipeline.from_pretrained(
"damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"
)
text_to_video_ms_1_7b_pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
text_to_video_ms_1_7b_pipeline.scheduler.config
)
text_to_video_ms_1_7b_pipeline.enable_model_cpu_offload()
text_to_video_ms_1_7b_pipeline.enable_vae_slicing()
text_to_video_ms_1_7b_short_pipeline = DiffusionPipeline.from_pretrained(
"damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"
)
text_to_video_ms_1_7b_short_pipeline.scheduler = (
DPMSolverMultistepScheduler.from_config(
text_to_video_ms_1_7b_short_pipeline.scheduler.config
)
)
text_to_video_ms_1_7b_short_pipeline.enable_model_cpu_offload()
tools = []
gen_image_tab = gr.Interface(
fn=generate_image,
inputs=gr.Textbox(label="Prompt:"),
outputs=gr.Image(type="pil"),
title="Generate Image",
)
edit_image_tab = gr.Interface(
fn=edit_image_with_prompt,
inputs=[
gr.Image(type="pil", label="Image:"),
gr.Textbox(label="Prompt:"),
gr.Slider(0.1, 1.0, 0.75, step=0.05, label="Strength:"),
],
outputs=gr.Image(type="pil"),
title="Edit Image",
)
generate_song_tab = gr.Interface(
fn=generate_song,
inputs=[
gr.Textbox(label="Prompt:"),
gr.Slider(5, 60, 10, step=1, label="Duration (s):"),
],
outputs=gr.Audio(type="numpy"),
title="Generate Songs",
)
generate_text_tab = gr.Interface(
fn=generate_text,
inputs=gr.Textbox(label="Prompt:"),
outputs=gr.Textbox(label="Generated Text:"),
title="Generate Text",
)
generate_flux_image_tab = gr.Interface(
fn=generate_flux_image,
inputs=gr.Textbox(label="Prompt:"),
outputs=gr.Image(type="pil"),
title="Generate FLUX Images",
)
generate_code_tab = gr.Interface(
fn=generate_code,
inputs=gr.Textbox(label="Prompt:"),
outputs=gr.Textbox(label="Generated Code:"),
title="Generate Code",
)
model_meta_llama_test_tab = gr.Interface(
fn=test_model_meta_llama,
inputs=None,
outputs=gr.Textbox(label="Model Output:"),
title="Test Meta-Llama",
)
generate_image_sdxl_tab = gr.Interface(
fn=generate_image_sdxl,
inputs=gr.Textbox(label="Prompt:"),
outputs=gr.Image(type="pil"),
title="Generate SDXL Image",
)
generate_musicgen_melody_tab = gr.Interface(
fn=generate_musicgen_melody,
inputs=gr.Textbox(label="Prompt:"),
outputs=gr.Audio(type="numpy"),
title="Generate MusicGen Melody",
)
generate_musicgen_large_tab = gr.Interface(
fn=generate_musicgen_large,
inputs=gr.Textbox(label="Prompt:"),
outputs=gr.Audio(type="numpy"),
title="Generate MusicGen Large",
)
transcribe_audio_tab = gr.Interface(
fn=transcribe_audio,
inputs=gr.Audio(type="numpy", label="Audio Sample:"),
outputs=gr.Textbox(label="Transcribed Text:"),
title="Transcribe Audio",
)
generate_mistral_instruct_tab = gr.Interface(
fn=generate_mistral_instruct,
inputs=gr.Textbox(label="Prompt:"),
outputs=gr.Textbox(label="Mistral Instruct Response:"),
title="Generate Mistral Instruct Response",
)
generate_mistral_nemo_tab = gr.Interface(
fn=generate_mistral_nemo,
inputs=gr.Textbox(label="Prompt:"),
outputs=gr.Textbox(label="Mistral Nemo Response:"),
title="Generate Mistral Nemo Response",
)
generate_gpt2_xl_tab = gr.Interface(
fn=generate_gpt2_xl,
inputs=gr.Textbox(label="Prompt:"),
outputs=gr.Textbox(label="GPT-2 XL Response:"),
title="Generate GPT-2 XL Response",
)
answer_question_minicpm_tab = gr.Interface(
fn=answer_question_minicpm,
inputs=[
gr.Image(type="pil", label="Image:"),
gr.Textbox(label="Question:"),
],
outputs=gr.Textbox(label="MiniCPM Answer:"),
title="Answer Question with MiniCPM",
)
llama_3_groq_70b_tool_use_tab = gr.Interface(
fn=llama_3_groq_70b_tool_use_pipeline,
inputs=[gr.Textbox(label="Prompt:")],
outputs=gr.Textbox(label="Llama 3 Groq 70B Tool Use Response:"),
title="Llama 3 Groq 70B Tool Use",
)
phi_3_5_mini_instruct_tab = gr.Interface(
fn=phi_3_5_mini_instruct_pipeline,
inputs=[gr.Textbox(label="Prompt:")],
outputs=gr.Textbox(label="Phi 3.5 Mini Instruct Response:"),
title="Phi 3.5 Mini Instruct",
)
meta_llama_3_1_8b_tab = gr.Interface(
fn=meta_llama_3_1_8b_pipeline,
inputs=[gr.Textbox(label="Prompt:")],
outputs=gr.Textbox(label="Meta Llama 3.1 8B Response:"),
title="Meta Llama 3.1 8B",
)
meta_llama_3_1_70b_tab = gr.Interface(
fn=meta_llama_3_1_70b_pipeline,
inputs=[gr.Textbox(label="Prompt:")],
outputs=gr.Textbox(label="Meta Llama 3.1 70B Response:"),
title="Meta Llama 3.1 70B",
)
medical_text_summarization_tab = gr.Interface(
fn=medical_text_summarization_pipeline,
inputs=[gr.Textbox(label="Medical Document:")],
outputs=gr.Textbox(label="Medical Text Summarization:"),
title="Medical Text Summarization",
)
bart_large_cnn_summarization_tab = gr.Interface(
fn=bart_large_cnn_summarization_pipeline,
inputs=[gr.Textbox(label="Article:")],
outputs=gr.Textbox(label="Bart Large CNN Summarization:"),
title="Bart Large CNN Summarization",
)
flux_1_dev_tab = gr.Interface(
fn=flux_1_dev_pipeline,
inputs=[gr.Textbox(label="Prompt:")],
outputs=gr.Image(type="pil"),
title="FLUX 1 Dev",
)
gemma_2_9b_tab = gr.Interface(
fn=gemma_2_9b_pipeline,
inputs=[gr.Textbox(label="Prompt:")],
outputs=gr.Textbox(label="Gemma 2 9B Response:"),
title="Gemma 2 9B",
)
gemma_2_9b_it_tab = gr.Interface(
fn=gemma_2_9b_it_pipeline,
inputs=[gr.Textbox(label="Prompt:")],
outputs=gr.Textbox(label="Gemma 2 9B IT Response:"),
title="Gemma 2 9B IT",
)
gemma_2_2b_tab = gr.Interface(
fn=gemma_2_2b_pipeline,
inputs=[gr.Textbox(label="Prompt:")],
outputs=gr.Textbox(label="Gemma 2 2B Response:"),
title="Gemma 2 2B",
)
gemma_2_2b_it_tab = gr.Interface(
fn=gemma_2_2b_it_pipeline,
inputs=[gr.Textbox(label="Prompt:")],
outputs=gr.Textbox(label="Gemma 2 2B IT Response:"),
title="Gemma 2 2B IT",
)
def generate_gemma_2_27b(prompt):
input_ids = gemma_2_27b_tokenizer(prompt, return_tensors="pt")
outputs = gemma_2_27b_model.generate(**input_ids, max_new_tokens=32)
return gemma_2_27b_tokenizer.decode(outputs[0])
gemma_2_27b_tab = gr.Interface(
fn=generate_gemma_2_27b,
inputs=[gr.Textbox(label="Prompt:")],
outputs=gr.Textbox(label="Gemma 2 27B Response:"),
title="Gemma 2 27B",
)
gemma_2_27b_it_tab = gr.Interface(
fn=gemma_2_27b_it_pipeline,
inputs=[gr.Textbox(label="Prompt:")],
outputs=gr.Textbox(label="Gemma 2 27B IT Response:"),
title="Gemma 2 27B IT",
)
text_to_video_ms_1_7b_tab = gr.Interface(
fn=generate_text_to_video_ms_1_7b,
inputs=[
gr.Textbox(label="Prompt:"),
gr.Slider(50, 200, 200, step=1, label="Number of Frames:"),
],
outputs=gr.Video(),
title="Text to Video MS 1.7B",
)
text_to_video_ms_1_7b_short_tab = gr.Interface(
fn=generate_text_to_video_ms_1_7b_short,
inputs=[gr.Textbox(label="Prompt:")],
outputs=gr.Video(),
title="Text to Video MS 1.7B Short",
)
app = gr.TabbedInterface(
[
gen_image_tab,
edit_image_tab,
generate_song_tab,
generate_text_tab,
generate_flux_image_tab,
generate_code_tab,
model_meta_llama_test_tab,
generate_image_sdxl_tab,
generate_musicgen_melody_tab,
generate_musicgen_large_tab,
transcribe_audio_tab,
generate_mistral_instruct_tab,
generate_mistral_nemo_tab,
generate_gpt2_xl_tab,
llama_3_groq_70b_tool_use_tab,
phi_3_5_mini_instruct_tab,
meta_llama_3_1_8b_tab,
meta_llama_3_1_70b_tab,
medical_text_summarization_tab,
bart_large_cnn_summarization_tab,
flux_1_dev_tab,
gemma_2_9b_tab,
gemma_2_9b_it_tab,
gemma_2_2b_tab,
gemma_2_2b_it_tab,
gemma_2_27b_tab,
gemma_2_27b_it_tab,
text_to_video_ms_1_7b_tab,
text_to_video_ms_1_7b_short_tab,
],
[
"Generate Image",
"Edit Image",
"Generate Song",
"Generate Text",
"Generate FLUX Image",
"Generate Code",
"Test Meta-Llama",
"Generate SDXL Image",
"Generate MusicGen Melody",
"Generate MusicGen Large",
"Transcribe Audio",
"Generate Mistral Instruct Response",
"Generate Mistral Nemo Response",
"Generate GPT-2 XL Response",
"Llama 3 Groq 70B Tool Use",
"Phi 3.5 Mini Instruct",
"Meta Llama 3.1 8B",
"Meta Llama 3.1 70B",
"Medical Text Summarization",
"Bart Large CNN Summarization",
"FLUX 1 Dev",
"Gemma 2 9B",
"Gemma 2 9B IT",
"Gemma 2 2B",
"Gemma 2 2B IT",
"Gemma 2 27B",
"Gemma 2 27B IT",
"Text to Video MS 1.7B",
"Text to Video MS 1.7B Short",
],
)
app.launch(share=True) |