NiinaAlavillamo commited on
Commit
3362ccd
·
verified ·
1 Parent(s): 3d71533

Update app.py

Browse files

Siivottu koodia

Files changed (1) hide show
  1. app.py +8 -9
app.py CHANGED
@@ -76,7 +76,7 @@ data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model_name)
76
  import torch
77
  torch.cuda.empty_cache()
78
 
79
- #nvidia-smi
80
 
81
  #pip install wandb
82
  import os
@@ -107,7 +107,7 @@ for name, param in model.named_parameters():
107
  training_args = Seq2SeqTrainingArguments(
108
  output_dir='./results',
109
  num_train_epochs=1,
110
- per_device_train_batch_size=4, # Pienennä batch-kokoa
111
  per_device_eval_batch_size=4,
112
  evaluation_strategy='epoch',
113
  logging_dir='./logs',
@@ -122,7 +122,7 @@ trainer = Seq2SeqTrainer(
122
  eval_dataset=tokenized_small_ds.shuffle().select(range(20, 100)), # Käytetään 200 esimerkkiä arvioimiseen
123
  )
124
 
125
- # Kouluta malli
126
  trainer.train()
127
 
128
  #pip install rouge_score
@@ -170,7 +170,7 @@ new_model = MT5ForConditionalGeneration.from_pretrained(model_name)
170
  from transformers import pipeline
171
  import torch
172
 
173
- # Syötteesi
174
  # Restructured input
175
  text = (
176
  "Summarize the following information regarding psoriasis, its effects on skin health, and its potential health risks:\n\n"
@@ -186,10 +186,10 @@ text = (
186
  # Määrittele laite (GPU tai CPU)
187
  device = 0 if torch.cuda.is_available() else -1
188
 
189
- # Lataa tiivistämispipeline
190
  summarizer = pipeline("summarization", model=new_model, tokenizer=new_tokenizer, device=device)
191
 
192
- # Tiivistä teksti
193
  summary = summarizer(text,
194
  max_length=120,
195
  min_length=30,
@@ -213,8 +213,7 @@ cleaned_summary = re.sub(pattern, " ", summary).strip()
213
  print(cleaned_summary)
214
 
215
 
216
- # Niinan koodi
217
- #pip install gradio PyMuPDF
218
 
219
  import gradio as gr
220
  from transformers import T5Tokenizer, MT5ForConditionalGeneration
@@ -286,6 +285,6 @@ interface = gr.Interface(
286
  description="Upload a PDF file to summarize its content."
287
  )
288
 
289
- # Launch the interface
290
  # Launch the interface with debug mode enabled
291
  interface.launch(debug=True)
 
76
  import torch
77
  torch.cuda.empty_cache()
78
 
79
+
80
 
81
  #pip install wandb
82
  import os
 
107
  training_args = Seq2SeqTrainingArguments(
108
  output_dir='./results',
109
  num_train_epochs=1,
110
+ per_device_train_batch_size=4,
111
  per_device_eval_batch_size=4,
112
  evaluation_strategy='epoch',
113
  logging_dir='./logs',
 
122
  eval_dataset=tokenized_small_ds.shuffle().select(range(20, 100)), # Käytetään 200 esimerkkiä arvioimiseen
123
  )
124
 
125
+ # train the model
126
  trainer.train()
127
 
128
  #pip install rouge_score
 
170
  from transformers import pipeline
171
  import torch
172
 
173
+
174
  # Restructured input
175
  text = (
176
  "Summarize the following information regarding psoriasis, its effects on skin health, and its potential health risks:\n\n"
 
186
  # Määrittele laite (GPU tai CPU)
187
  device = 0 if torch.cuda.is_available() else -1
188
 
189
+ # Load the pipeline
190
  summarizer = pipeline("summarization", model=new_model, tokenizer=new_tokenizer, device=device)
191
 
192
+ # Summarize the text
193
  summary = summarizer(text,
194
  max_length=120,
195
  min_length=30,
 
213
  print(cleaned_summary)
214
 
215
 
216
+
 
217
 
218
  import gradio as gr
219
  from transformers import T5Tokenizer, MT5ForConditionalGeneration
 
285
  description="Upload a PDF file to summarize its content."
286
  )
287
 
288
+
289
  # Launch the interface with debug mode enabled
290
  interface.launch(debug=True)