Spaces:
Runtime error
Runtime error
NiinaAlavillamo
commited on
Update app.py
Browse filesSiivottu koodia
app.py
CHANGED
@@ -76,7 +76,7 @@ data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model_name)
|
|
76 |
import torch
|
77 |
torch.cuda.empty_cache()
|
78 |
|
79 |
-
|
80 |
|
81 |
#pip install wandb
|
82 |
import os
|
@@ -107,7 +107,7 @@ for name, param in model.named_parameters():
|
|
107 |
training_args = Seq2SeqTrainingArguments(
|
108 |
output_dir='./results',
|
109 |
num_train_epochs=1,
|
110 |
-
per_device_train_batch_size=4,
|
111 |
per_device_eval_batch_size=4,
|
112 |
evaluation_strategy='epoch',
|
113 |
logging_dir='./logs',
|
@@ -122,7 +122,7 @@ trainer = Seq2SeqTrainer(
|
|
122 |
eval_dataset=tokenized_small_ds.shuffle().select(range(20, 100)), # Käytetään 200 esimerkkiä arvioimiseen
|
123 |
)
|
124 |
|
125 |
-
#
|
126 |
trainer.train()
|
127 |
|
128 |
#pip install rouge_score
|
@@ -170,7 +170,7 @@ new_model = MT5ForConditionalGeneration.from_pretrained(model_name)
|
|
170 |
from transformers import pipeline
|
171 |
import torch
|
172 |
|
173 |
-
|
174 |
# Restructured input
|
175 |
text = (
|
176 |
"Summarize the following information regarding psoriasis, its effects on skin health, and its potential health risks:\n\n"
|
@@ -186,10 +186,10 @@ text = (
|
|
186 |
# Määrittele laite (GPU tai CPU)
|
187 |
device = 0 if torch.cuda.is_available() else -1
|
188 |
|
189 |
-
#
|
190 |
summarizer = pipeline("summarization", model=new_model, tokenizer=new_tokenizer, device=device)
|
191 |
|
192 |
-
#
|
193 |
summary = summarizer(text,
|
194 |
max_length=120,
|
195 |
min_length=30,
|
@@ -213,8 +213,7 @@ cleaned_summary = re.sub(pattern, " ", summary).strip()
|
|
213 |
print(cleaned_summary)
|
214 |
|
215 |
|
216 |
-
|
217 |
-
#pip install gradio PyMuPDF
|
218 |
|
219 |
import gradio as gr
|
220 |
from transformers import T5Tokenizer, MT5ForConditionalGeneration
|
@@ -286,6 +285,6 @@ interface = gr.Interface(
|
|
286 |
description="Upload a PDF file to summarize its content."
|
287 |
)
|
288 |
|
289 |
-
|
290 |
# Launch the interface with debug mode enabled
|
291 |
interface.launch(debug=True)
|
|
|
76 |
import torch
|
77 |
torch.cuda.empty_cache()
|
78 |
|
79 |
+
|
80 |
|
81 |
#pip install wandb
|
82 |
import os
|
|
|
107 |
training_args = Seq2SeqTrainingArguments(
|
108 |
output_dir='./results',
|
109 |
num_train_epochs=1,
|
110 |
+
per_device_train_batch_size=4,
|
111 |
per_device_eval_batch_size=4,
|
112 |
evaluation_strategy='epoch',
|
113 |
logging_dir='./logs',
|
|
|
122 |
eval_dataset=tokenized_small_ds.shuffle().select(range(20, 100)), # Käytetään 200 esimerkkiä arvioimiseen
|
123 |
)
|
124 |
|
125 |
+
# train the model
|
126 |
trainer.train()
|
127 |
|
128 |
#pip install rouge_score
|
|
|
170 |
from transformers import pipeline
|
171 |
import torch
|
172 |
|
173 |
+
|
174 |
# Restructured input
|
175 |
text = (
|
176 |
"Summarize the following information regarding psoriasis, its effects on skin health, and its potential health risks:\n\n"
|
|
|
186 |
# Määrittele laite (GPU tai CPU)
|
187 |
device = 0 if torch.cuda.is_available() else -1
|
188 |
|
189 |
+
# Load the pipeline
|
190 |
summarizer = pipeline("summarization", model=new_model, tokenizer=new_tokenizer, device=device)
|
191 |
|
192 |
+
# Summarize the text
|
193 |
summary = summarizer(text,
|
194 |
max_length=120,
|
195 |
min_length=30,
|
|
|
213 |
print(cleaned_summary)
|
214 |
|
215 |
|
216 |
+
|
|
|
217 |
|
218 |
import gradio as gr
|
219 |
from transformers import T5Tokenizer, MT5ForConditionalGeneration
|
|
|
285 |
description="Upload a PDF file to summarize its content."
|
286 |
)
|
287 |
|
288 |
+
|
289 |
# Launch the interface with debug mode enabled
|
290 |
interface.launch(debug=True)
|