Zhu-FaceOnLive commited on
Commit
c2b0164
·
1 Parent(s): 81efcf0

Upload 9 files

Browse files
Dockerfile ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM ubuntu:20.04
2
+ RUN ln -snf /usr/share/zoneinfo/$CONTAINER_TIMEZONE /etc/localtime && echo $CONTAINER_TIMEZONE > /etc/timezone
3
+ RUN apt-get update -y
4
+ RUN apt-get install -y python3 python3-pip python3-opencv
5
+ RUN apt-get install -y libcurl4-openssl-dev libssl-dev
6
+ RUN mkdir -p /home/FaceOnLive_v6
7
+ RUN mkdir -p /home/FaceOnLive_v6/facewrapper
8
+ WORKDIR /home/FaceOnLive_v6
9
+ COPY ./facewrapper ./facewrapper
10
+ COPY ./facewrapper/libs/libimutils.so /usr/lib
11
+ COPY ./gradio ./gradio
12
+ COPY ./openvino /usr/lib
13
+ COPY ./app.py ./app.py
14
+ COPY ./run.sh .
15
+ COPY ./requirements.txt ./requirements.txt
16
+ RUN pip3 install -r requirements.txt
17
+ RUN chmod a+x run.sh
18
+ CMD ["./run.sh"]
19
+ EXPOSE 8000
app.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ sys.path.append('.')
3
+
4
+ from flask import Flask, request, jsonify
5
+ from time import gmtime, strftime
6
+ import os
7
+ import base64
8
+ import json
9
+ import cv2
10
+ import numpy as np
11
+
12
+ from facewrapper.facewrapper import ttv_version
13
+ from facewrapper.facewrapper import ttv_get_hwid
14
+ from facewrapper.facewrapper import ttv_init
15
+ from facewrapper.facewrapper import ttv_init_offline
16
+ from facewrapper.facewrapper import ttv_extract_feature
17
+ from facewrapper.facewrapper import ttv_compare_feature
18
+
19
+ app = Flask(__name__)
20
+
21
+ app.config['SITE'] = "http://0.0.0.0:8000/"
22
+ app.config['DEBUG'] = False
23
+
24
+ licenseKey = os.environ.get("LICENSE_KEY")
25
+ licensePath = "license.txt"
26
+ modelFolder = os.path.abspath(os.path.dirname(__file__)) + '/facewrapper/dict'
27
+
28
+ version = ttv_version()
29
+ print("version: ", version.decode('utf-8'))
30
+
31
+ ret = ttv_init(modelFolder.encode('utf-8'), licenseKey.encode('utf-8'))
32
+ if ret != 0:
33
+ print(f"online init failed: {ret}");
34
+
35
+ hwid = ttv_get_hwid()
36
+ print("hwid: ", hwid.decode('utf-8'))
37
+
38
+ ret = ttv_init_offline(modelFolder.encode('utf-8'), licensePath.encode('utf-8'))
39
+ if ret != 0:
40
+ print(f"offline init failed: {ret}")
41
+ exit(-1)
42
+ else:
43
+ print(f"offline init ok")
44
+
45
+ else:
46
+ print(f"online init ok")
47
+
48
+ @app.route('/api/compare_face', methods=['POST'])
49
+ def compare_face():
50
+ file1 = request.files['image1']
51
+ image1 = cv2.imdecode(np.fromstring(file1.read(), np.uint8), cv2.IMREAD_COLOR)
52
+ if image1 is None:
53
+ result = "image1: is null!"
54
+ status = "ok"
55
+ response = jsonify({"status": status, "data": {"result": result}})
56
+ response.status_code = 200
57
+ response.headers["Content-Type"] = "application/json; charset=utf-8"
58
+ return response
59
+
60
+ file2 = request.files['image2']
61
+ image2 = cv2.imdecode(np.fromstring(file2.read(), np.uint8), cv2.IMREAD_COLOR)
62
+ if image2 is None:
63
+ result = "image2: is null!"
64
+ status = "ok"
65
+ response = jsonify({"status": status, "data": {"result": result}})
66
+ response.status_code = 200
67
+ response.headers["Content-Type"] = "application/json; charset=utf-8"
68
+ return response
69
+
70
+ faceRect1 = np.zeros([4], dtype=np.int32)
71
+ feature1 = np.zeros([2048], dtype=np.uint8)
72
+ featureSize1 = np.zeros([1], dtype=np.int32)
73
+
74
+ ret = ttv_extract_feature(image1, image1.shape[1], image1.shape[0], faceRect1, feature1, featureSize1)
75
+ if ret <= 0:
76
+ if ret == -1:
77
+ result = "license error!"
78
+ elif ret == -2:
79
+ result = "init error!"
80
+ elif ret == 0:
81
+ result = "image1: no face detected!"
82
+
83
+ status = "ok"
84
+ response = jsonify({"status": status, "data": {"result": result}})
85
+ response.status_code = 200
86
+ response.headers["Content-Type"] = "application/json; charset=utf-8"
87
+ return response
88
+
89
+ faceRect2 = np.zeros([4], dtype=np.int32)
90
+ feature2 = np.zeros([2048], dtype=np.uint8)
91
+ featureSize2 = np.zeros([1], dtype=np.int32)
92
+
93
+ ret = ttv_extract_feature(image2, image2.shape[1], image2.shape[0], faceRect2, feature2, featureSize2)
94
+ if ret <= 0:
95
+ if ret == -1:
96
+ result = "license error!"
97
+ elif ret == -2:
98
+ result = "init error!"
99
+ elif ret == 0:
100
+ result = "image2: no face detected!"
101
+
102
+ status = "ok"
103
+ response = jsonify({"status": status, "data": {"result": result}})
104
+ response.status_code = 200
105
+ response.headers["Content-Type"] = "application/json; charset=utf-8"
106
+ return response
107
+
108
+ similarity = ttv_compare_feature(feature1, feature2)
109
+ if similarity > 0.7:
110
+ result = "same"
111
+ else:
112
+ result = "different"
113
+
114
+ status = "ok"
115
+ response = jsonify(
116
+ {
117
+ "status": status,
118
+ "data": {
119
+ "result": result,
120
+ "similarity": float(similarity),
121
+ "face1": {"x1": int(faceRect1[0]), "y1": int(faceRect1[1]), "x2": int(faceRect1[2]), "y2" : int(faceRect1[3])},
122
+ "face2": {"x1": int(faceRect2[0]), "y1": int(faceRect2[1]), "x2": int(faceRect2[2]), "y2" : int(faceRect2[3])},
123
+ }
124
+ })
125
+
126
+ response.status_code = 200
127
+ response.headers["Content-Type"] = "application/json; charset=utf-8"
128
+ return response
129
+
130
+
131
+ @app.route('/api/compare_face_base64', methods=['POST'])
132
+ def coompare_face_base64():
133
+ content = request.get_json()
134
+ imageBase641 = content['image1']
135
+ image1 = cv2.imdecode(np.frombuffer(base64.b64decode(imageBase641), dtype=np.uint8), cv2.IMREAD_COLOR)
136
+
137
+ if image1 is None:
138
+ result = "image1: is null!"
139
+ status = "ok"
140
+ response = jsonify({"status": status, "data": {"result": result}})
141
+ response.status_code = 200
142
+ response.headers["Content-Type"] = "application/json; charset=utf-8"
143
+ return response
144
+
145
+ imageBase642 = content['image2']
146
+ image2 = cv2.imdecode(np.frombuffer(base64.b64decode(imageBase642), dtype=np.uint8), cv2.IMREAD_COLOR)
147
+
148
+ if image2 is None:
149
+ result = "image2: is null!"
150
+ status = "ok"
151
+ response = jsonify({"status": status, "data": {"result": result}})
152
+ response.status_code = 200
153
+ response.headers["Content-Type"] = "application/json; charset=utf-8"
154
+ return response
155
+
156
+ faceRect1 = np.zeros([4], dtype=np.int32)
157
+ feature1 = np.zeros([2048], dtype=np.uint8)
158
+ featureSize1 = np.zeros([1], dtype=np.int32)
159
+
160
+ ret = ttv_extract_feature(image1, image1.shape[1], image1.shape[0], faceRect1, feature1, featureSize1)
161
+ if ret <= 0:
162
+ if ret == -1:
163
+ result = "license error!"
164
+ elif ret == -2:
165
+ result = "init error!"
166
+ elif ret == 0:
167
+ result = "image1: no face detected!"
168
+
169
+ status = "ok"
170
+ response = jsonify({"status": status, "data": {"result": result}})
171
+ response.status_code = 200
172
+ response.headers["Content-Type"] = "application/json; charset=utf-8"
173
+ return response
174
+
175
+ faceRect2 = np.zeros([4], dtype=np.int32)
176
+ feature2 = np.zeros([2048], dtype=np.uint8)
177
+ featureSize2 = np.zeros([1], dtype=np.int32)
178
+
179
+ ret = ttv_extract_feature(image2, image2.shape[1], image2.shape[0], faceRect2, feature2, featureSize2)
180
+ if ret <= 0:
181
+ if ret == -1:
182
+ result = "license error!"
183
+ elif ret == -2:
184
+ result = "init error!"
185
+ elif ret == 0:
186
+ result = "image2: no face detected!"
187
+
188
+ status = "ok"
189
+ response = jsonify({"status": status, "data": {"result": result}})
190
+ response.status_code = 200
191
+ response.headers["Content-Type"] = "application/json; charset=utf-8"
192
+ return response
193
+
194
+ similarity = ttv_compare_feature(feature1, feature2)
195
+ if similarity > 0.7:
196
+ result = "same"
197
+ else:
198
+ result = "different"
199
+
200
+ status = "ok"
201
+ response = jsonify(
202
+ {
203
+ "status": status,
204
+ "data": {
205
+ "result": result,
206
+ "similarity": float(similarity),
207
+ "face1": {"x1": int(faceRect1[0]), "y1": int(faceRect1[1]), "x2": int(faceRect1[2]), "y2" : int(faceRect1[3])},
208
+ "face2": {"x1": int(faceRect2[0]), "y1": int(faceRect2[1]), "x2": int(faceRect2[2]), "y2" : int(faceRect2[3])},
209
+ }
210
+ })
211
+ response.status_code = 200
212
+ response.headers["Content-Type"] = "application/json; charset=utf-8"
213
+ return response
214
+
215
+ if __name__ == '__main__':
216
+ port = int(os.environ.get("PORT", 8000))
217
+ app.run(host='0.0.0.0', port=port)
gradio/demo.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import requests
3
+ import json
4
+ from PIL import Image
5
+
6
+ def compare_face(frame1, frame2):
7
+ url = "http://127.0.0.1:8000/api/compare_face"
8
+ files = {'image1': open(frame1, 'rb'), 'image2': open(frame2, 'rb')}
9
+
10
+ r = requests.post(url=url, files=files)
11
+ faces = None
12
+
13
+ try:
14
+ image1 = Image.open(frame1)
15
+ image2 = Image.open(frame2)
16
+
17
+ face1 = None
18
+ face2 = None
19
+ data = r.json().get('data')
20
+ if data.get('face1') is not None:
21
+ face = data.get('face1')
22
+ x1 = face.get('x1')
23
+ y1 = face.get('y1')
24
+ x2 = face.get('x2')
25
+ y2 = face.get('y2')
26
+ if x1 < 0:
27
+ x1 = 0
28
+ if y1 < 0:
29
+ y1 = 0
30
+ if x2 >= image1.width:
31
+ x2 = image1.width - 1
32
+ if y2 >= image1.height:
33
+ y2 = image1.height - 1
34
+
35
+ face1 = image1.crop((x1, y1, x2, y2))
36
+ face_image_ratio = face1.width / float(face1.height)
37
+ resized_w = int(face_image_ratio * 150)
38
+ resized_h = 150
39
+
40
+ face1 = face1.resize((int(resized_w), int(resized_h)))
41
+
42
+ if data.get('face2') is not None:
43
+ face = data.get('face2')
44
+ x1 = face.get('x1')
45
+ y1 = face.get('y1')
46
+ x2 = face.get('x2')
47
+ y2 = face.get('y2')
48
+
49
+ if x1 < 0:
50
+ x1 = 0
51
+ if y1 < 0:
52
+ y1 = 0
53
+ if x2 >= image2.width:
54
+ x2 = image2.width - 1
55
+ if y2 >= image2.height:
56
+ y2 = image2.height - 1
57
+
58
+ face2 = image2.crop((x1, y1, x2, y2))
59
+ face_image_ratio = face2.width / float(face2.height)
60
+ resized_w = int(face_image_ratio * 150)
61
+ resized_h = 150
62
+
63
+ face2 = face2.resize((int(resized_w), int(resized_h)))
64
+
65
+ if face1 is not None and face2 is not None:
66
+ new_image = Image.new('RGB',(face1.width + face2.width + 10, 150), (80,80,80))
67
+
68
+ new_image.paste(face1,(0,0))
69
+ new_image.paste(face2,(face1.width + 10, 0))
70
+ faces = new_image.copy()
71
+ elif face1 is not None and face2 is None:
72
+ new_image = Image.new('RGB',(face1.width + face1.width + 10, 150), (80,80,80))
73
+
74
+ new_image.paste(face1,(0,0))
75
+ faces = new_image.copy()
76
+ elif face1 is None and face2 is not None:
77
+ new_image = Image.new('RGB',(face2.width + face2.width + 10, 150), (80,80,80))
78
+
79
+ new_image.paste(face2,(face2.width + 10, 0))
80
+ faces = new_image.copy()
81
+ except:
82
+ pass
83
+
84
+ return [r.json(), faces]
85
+
86
+ with gr.Blocks() as demo:
87
+ gr.Markdown(
88
+ """
89
+ # Face Recognition
90
+ Get your own Face Recognition Server by duplicating this space.<br/>
91
+ Or run on your own machine using docker.<br/>
92
+ ```docker run -it -p 7860:7860 --platform=linux/amd64 \
93
+ -e LICENSE_KEY="YOUR_VALUE_HERE" \
94
+ registry.hf.space/faceonlive-face-recognition-sdk:latest ```<br/><br/>
95
+ Contact us at [email protected] for issues and support.<br/>
96
+ """
97
+ )
98
+ with gr.Row():
99
+ with gr.Column():
100
+ compare_face_input1 = gr.Image(type='filepath', height=480)
101
+ gr.Examples(['gradio/examples/1.jpg', 'gradio/examples/2.jpg'],
102
+ inputs=compare_face_input1)
103
+ compare_face_button = gr.Button("Compare Face")
104
+ with gr.Column():
105
+ compare_face_input2 = gr.Image(type='filepath', height=480)
106
+ gr.Examples(['gradio/examples/3.jpg', 'gradio/examples/4.jpg'],
107
+ inputs=compare_face_input2)
108
+ with gr.Column():
109
+ compare_face_output = gr.Image(type="pil", height=150)
110
+ compare_result_output = gr.JSON(label='Result')
111
+
112
+ compare_face_button.click(compare_face, inputs=[compare_face_input1, compare_face_input2], outputs=[compare_result_output, compare_face_output])
113
+
114
+ demo.launch(server_name="0.0.0.0", server_port=7860)
gradio/examples/1.jpg ADDED
gradio/examples/2.jpg ADDED
gradio/examples/3.jpg ADDED
gradio/examples/4.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ flask
2
+ flask-cors
3
+ gradio
4
+ opencv-python
5
+ numpy==1.20.3
6
+ pillow
run.sh ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ exec python3 app.py &
4
+ exec python3 gradio/demo.py